发布里程计传感器信息

 

一。ROS使用tf来决定机器人的位置和静态地图中的传感器数据,但是tf中没有机 器人的速度信息,所以导航功能包要求机器人 能够通过里程计信息源发布包含速度信息的里程计nav_msgs/Odometry 消息。 本篇将介绍nav_msgs/Odometry消息,并且通过代码实现消息的发布,以及tf树的变换。这里使用一个简单的例程,实现 nav_msgs/Odometry消息的发布和tf变换,通过伪造的数据,实现机器人圆周运动。

ros工作空间中新建功能包,包含以下库

 

catkin_create_pkg odom_tf_package std_msgs rospy roscpp sensor_msgs tf nav_msgs

 

 

 

新建odom_tf_package/src/odom_tf_node.cpp

 

 gedit odom_tf_node.cpp

 

 

 

粘贴进去:

 

复制代码

#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>



int main(int argc, char** argv)
{

    ros::init(argc, argv, "odometry_publisher");
    ros::NodeHandle n;
    ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", 50);
    tf::TransformBroadcaster odom_broadcaster;

    double x = 0.0;
    double y = 0.0;
    double th = 0.0;

    double vx = 0.1;
    double vy = -0.1;
    double vth = 0.1;

    ros::Time current_time, last_time;
    current_time = ros::Time::now();
    last_time = ros::Time::now();

    ros::Rate r(1.0);
    while(n.ok())
    {


        ros::spinOnce();               // check for incoming messages
        current_time = ros::Time::now();

        //compute odometry in a typical way given the velocities of the robot
        double dt = (current_time - last_time).toSec();
        double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
        double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
        double delta_th = vth * dt;

        x += delta_x;
        y += delta_y;
        th += delta_th;
        //since all odometry is 6DOF we'll need a quaternion created from yaw
        geometry_msgs::Quaternion odom_quat = tf::createQuaternionMsgFromYaw(th);
        //first, we'll publish the transform over tf
        geometry_msgs::TransformStamped odom_trans;
        odom_trans.header.stamp = current_time;
        odom_trans.header.frame_id = "odom";
        odom_trans.child_frame_id = "base_link";
        odom_trans.transform.translation.x = x;
        odom_trans.transform.translation.y = y;
        odom_trans.transform.translation.z = 0.0;
        odom_trans.transform.rotation = odom_quat;

        //send the transform
        odom_broadcaster.sendTransform(odom_trans);

        //next, we'll publish the odometry message over ROS
        nav_msgs::Odometry odom;
        odom.header.stamp = current_time;
        odom.header.frame_id = "odom";

        //set the position
        odom.pose.pose.position.x = x;
        odom.pose.pose.position.y = y;
        odom.pose.pose.position.z = 0.0;
        odom.pose.pose.orientation = odom_quat;

        //set the velocity
        odom.child_frame_id = "base_link";
        odom.twist.twist.linear.x = vx;
        odom.twist.twist.linear.y = vy;
        odom.twist.twist.angular.z = vth;

        //publish the message
        odom_pub.publish(odom);
        last_time = current_time;
        r.sleep();

        }
}

 

 

下面来剖析代码进行分析:

    #include <tf/transform_broadcaster.h>
    #include <nav_msgs/Odometry.h>

 我们需要实现“odom”参考系到“base_link”参考系的变换,以及nav_msgs/Odometry消息的发布,所以首先需要包含相关的头文件。

      ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", 50);  
      tf::TransformBroadcaster odom_broadcaster;

  定义一个消息发布者来发布“odom”消息,在定义一个tf广播,来发布tf变换信息。

      double x = 0.0;
      double y = 0.0;
      double th = 0.0;

 默认机器人的起始位置是odom参考系下的0点。

      double vx = 0.1;
      double vy = -0.1;
      double vth = 0.1;

我们设置机器人的默认前进速度,让机器人的base_link参考系在odom参考系下以x轴方向0.1m/s,Y轴速度-0.1m/s,角速度0.1rad/s的状态移动,这种状态下,可以让机器人保持圆周运动。

  ros::Rate r(1.0);

使用1Hz的频率发布odom消息,当然,在实际系统中,往往需要更快的速度进行发布。

复制代码
        //compute odometry in a typical way given the velocities of the robot
        double dt = (current_time - last_time).toSec();
        double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
        double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
        double delta_th = vth * dt;
    
        x += delta_x;
        y += delta_y;
        th += delta_th;
复制代码

使用我们设置的速度信息,来计算并更新里程计的信息,包括单位时间内机器人在x轴、y轴的坐标变化和角度的变化。在实际系统中,需要更具里程计的实际信息进行更新。

       //since all odometry is 6DOF we'll need a quaternion created from yaw
        geometry_msgs::Quaternion odom_quat = tf::createQuaternionMsgFromYaw(th);

为了兼容二维和三维的功能包,让消息结构更加通用,里程计的偏航角需要转换成四元数才能发布,辛运的是,ROS为我们提供了偏航角与四元数相互转换的功能。

        //first, we'll publish the transform over tf
        geometry_msgs::TransformStamped odom_trans;
        odom_trans.header.stamp = current_time;
        odom_trans.header.frame_id = "odom";
        odom_trans.child_frame_id = "base_link";

 创建一个tf发布需要使用的TransformStamped类型消息,然后根据消息结构填充当前的时间戳、参考系id、子参考系id,注意两个参考系的id必须要是“odom”和“base_link”。

        odom_trans.transform.translation.x = x;
        odom_trans.transform.translation.y = y;
        odom_trans.transform.translation.z = 0.0;
        odom_trans.transform.rotation = odom_quat;

 填充里程计信息,然后发布tf变换的消息。

        //next, we'll publish the odometry message over ROS
        nav_msgs::Odometry odom;
        odom.header.stamp = current_time;

我们还要发布nav_msgs/Odometry消息,让导航包获取机器人的速度。创建消息变量,然后填充时间戳。

复制代码
        //set the position
        odom.pose.pose.position.x = x;
        odom.pose.pose.position.y = y;
        odom.pose.pose.position.z = 0.0;
        odom.pose.pose.orientation = odom_quat;
        //set the velocity
        odom.child_frame_id = "base_link";
        odom.twist.twist.linear.x = vx;
        odom.twist.twist.linear.y = vy;
        odom.twist.twist.angular.z = vth;
复制代码

  填充机器人的位置、速度,然后发布消息。注意,我们发布的是机器人本体的信息,所以参考系需要填"base_link"。

1.3.编译源码:在odom_tf_package/CMakeLists.txt添加编译选项:

add_executable(odom_tf_node src/odom_tf_node.cpp)
target_link_libraries(odom_tf_node ${catkin_LIBRARIES})

返回到你的工作空间的顶层目录下:

catkin_make 

 

 

二。  在导航过程中,传感器的信息至关重要,这些传感器可以是激光雷达、摄像机、声纳、红外线、碰撞开关,但是归根结底,导航功能包要求机器人必须发布 sensor_msgs/LaserScan或sensor_msgs/PointCloud格式的传感器信息,本篇将详细介绍如何使用代码发布所需要的 消息。无论是 sensor_msgs/LaserScan,还是sensor_msgs/PointCloud ,都和ROS中tf帧信息等时间相关的消息一样,带标准格式的头信息。

 

复制代码
    #Standard metadata for higher-level flow data types
    #sequence ID: consecutively increasing ID 
    uint32 seq    
    #Two-integer timestamp that is expressed as:
    # * stamp.secs: seconds (stamp_secs) since epoch
    # * stamp.nsecs: nanoseconds since stamp_secs
    # time-handling sugar is provided by the client library
    time stamp     
    #Frame this data is associated with
    # 0: no frame
    # 1: global frame
    string frame_id
复制代码

 

以上是标准头信息的主要部分。seq是消息的顺序标识,不需要手动设置,发布节点在发布消息时,会自动累加。stamp 是消息中与数据相关联的时间戳, 例如激光数据中,时间戳对应激光数据的采集时间点。frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光 数据采集的参考系。

 

2.1.如何发布点云数据。

 

点云消息的结构

 

    #This message holds a collection of 3d points, plus optional additional information about each point.   
    #Each Point32 should be interpreted as a 3d point in the frame given in the header          
   
    Header header     
    geometry_msgs/Point32[] points  #Array of 3d points  
    ChannelFloat32[] channels       #Each channel should have the same number of elements as points array, and the data in each channel should correspond 1:1 with each point

 

如上所示,点云消息的结构支持存储三维环境的点阵列,而且channels参数中,可以设置这些点云相关的数据,例如可以设置一个强度通道,存储每个点的数据强度,还可以设置一个系数通道,存储每个点的反射系数,等等。

 

2.2.通过代码发布点云数据

 

.在odom_tf_package/src下创建TF变换的代码文件:

 

gedit point_kinect_node.cpp

 

源代码如下:

 

复制代码
#include "ros/ros.h"
#include <sensor_msgs/PointCloud.h>

int main(int argc, char** argv)
{
    ros::init(argc, argv, "point_cloud_publisher");
    ros::NodeHandle n;
    ros::Publisher cloud_pub = n.advertise<sensor_msgs::PointCloud>("cloud", 50);
    unsigned int num_points = 100;
    int count = 0;
    ros::Rate r(1.0);
    while(n.ok())
    {

        sensor_msgs::PointCloud cloud;
        cloud.header.stamp = ros::Time::now();
        cloud.header.frame_id = "sensor_frame";

        cloud.points.resize(num_points);


        //we'll also add an intensity channel to the cloud
        cloud.channels.resize(1);
        cloud.channels[0].name = "intensities";
        cloud.channels[0].values.resize(num_points);

        //generate some fake data for our point cloud

        for(unsigned int i = 0; i < num_points; ++i)
        {
            cloud.points[i].x = 1 + count;
            cloud.points[i].y = 2 + count;
            cloud.points[i].z = 3 + count;
            cloud.channels[0].values[i] = 100 + count;
        }

        cloud_pub.publish(cloud);

        ++count;
        r.sleep();
    }

}
复制代码

 

分解代码来分析:

 

#include <sensor_msgs/PointCloud.h>

 

 首先也是要包含sensor_msgs/PointCloud消息结构。

 

    ros::Publisher cloud_pub = n.advertise<sensor_msgs::PointCloud>("cloud", 50);

 

定义一个发布点云消息的发布者。

 

        sensor_msgs::PointCloud cloud;
        cloud.header.stamp = ros::Time::now();
        cloud.header.frame_id = "sensor_frame";

 

 为点云消息填充头信息,包括时间戳和相关的参考系id。

 

    cloud.points.resize(num_points);

 

设置存储点云数据的空间大小。

 

        //we'll also add an intensity channel to the cloud
        cloud.channels.resize(1);
        cloud.channels[0].name = "intensities";
        cloud.channels[0].values.resize(num_points);

 

设置一个名为“intensity“的强度通道,并且设置存储每个点强度信息的空间大小。

 

        //generate some fake data for our point cloud
        for(unsigned int i = 0; i < num_points; ++i){
          cloud.points[i].x = 1 + count;
          cloud.points[i].y = 2 + count;
          cloud.points[i].z = 3 + count;
          cloud.channels[0].values[i] = 100 + count;   

 

 将我们伪造的数据填充到点云消息结构当中。

 

   cloud_pub.publish(cloud);

 

 最后,发布点云数据。

 

2.3.编译源码:在odom_tf_package/CMakeLists.txt添加编译选项:

 

add_executable(point_kinect_node src/point_kinect_node.cpp)
target_link_libraries(point_kinect_node ${catkin_LIBRARIES})

 

返回到你的工作空间的顶层目录下:

 

catkin_make

 

三:测试代码:

 

roscore
rosrun odom_tf_package odom_tf_node
rosrun odom_tf_package point_kinect_node
rviz

 

 

 

3.2.查看发布的点云数据。

 

rostopic echo /cloud 

 

 

posted @ 2016-09-18 15:09  CAM&  阅读(2674)  评论(0编辑  收藏  举报