AtCoder284 D - Happy New Year 2023
AtCoder284 D - Happy New Year 2023
[Editorial](Editorial - AtCoder Beginner Contest 284)
You are given a positive integer \(N\). It is known that \(N\) can be represented as \(N=p^2q\) using two different prime numbers \(p\) and \(q\).
Find \(p\) and \(q\).
You have \(T\) test cases to solve.
首先,我们易知 \(min(p,q)\le \sqrt[3]{n}\),于是时间复杂度 \(O(\sqrt[3]n)\),最大时为 \(10^6\) 左右。
因为 \(N=p^2q\),\(p,q\) 都是质数,我们知道这样的分解是唯一的,故找到一组就是答案。
枚举只能是 \(p,q,p^2,pq\) 四种数。且 \(p,q<p^2,pq\) 故先找到的数只能是 \(p\) 或 \(q\)。
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int t;
cin >> t;
while (t--) {
ll n;
cin >> n;
ll p = 0, q = 0;
for (ll i = 2; i * i * i <= n; i++) {
if (n % i != 0) continue;
if ((n / i) % i == 0) {
p = i;
q = n / i / i;
} else {
q = i;
p = (ll) round(sqrt(n / i));
}
}
cout << p << ' ' << q << endl;
}
}