Loading

代码随想录——动态规划

斐波那契数

题目 简单

class Solution {
    public int fib(int n) {
        if (n < 2) return n;
        int a = 0, b = 1, c = 0;
        for (int i = 1; i < n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }
}
//非压缩状态的版本
class Solution {
    public int fib(int n) {
        if (n <= 1) return n;             
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for (int index = 2; index <= n; index++){
            dp[index] = dp[index - 1] + dp[index - 2];
        }
        return dp[n];
    }
}

爬楼梯

题目 简单

// 常规方式
public int climbStairs(int n) {
    int[] dp = new int[n + 1];
    dp[0] = 1;
    dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
// 用变量记录代替数组
class Solution {
    public int climbStairs(int n) {
        if(n <= 2) return n;
        int a = 1, b = 2, sum = 0;

        for(int i = 3; i <= n; i++){
            sum = a + b;  // f(i - 1) + f(i - 2)
            a = b;        // 记录f(i - 1),即下一轮的f(i - 2)
            b = sum;      // 记录f(i),即下一轮的f(i - 1)
        }
        return b;
    }
}

使用最小花费爬楼梯

题目 简单

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int[] dp = new int[len + 1];

        // 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
        dp[0] = 0;
        dp[1] = 0;

        // 计算到达每一层台阶的最小费用
        for (int i = 2; i <= len; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }

        return dp[len];
    }
}

不同路径

题目 中等

public static int uniquePaths(int m, int n) {
    int[][] dp = new int[m][n];
    //初始化
    for (int i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    for (int i = 0; i < n; i++) {
        dp[0][i] = 1;
    }

    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
}

不同路径 II

题目 中等

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];

        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }
}
// 空间优化版本
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[] dp = new int[n];
        
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[j] = 1;
        }
        
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[j] = 0;
                } else if (j != 0) {
                    dp[j] += dp[j - 1];
                }
            }
        }
        return dp[n - 1];
    }
}

整数拆分

题目 中等

本题其实和剑指offer里的剪绳子一样,可以用数学方法做。不过在动态规划章节里,就只贴动态规划的代码了:

class Solution {
    public int integerBreak(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[] dp = new int[n + 1];
        dp[2] = 1;
        for(int i = 3; i <= n; i++) {
            for(int j = 1; j <= i - j; j++) {
                // 这里的 j 其实最大值为 i - j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0],dp[1] 都是无意义的,
                //j 最大到 i - j,就不会用到 dp[0] 与 dp[1]
                dp[i] = Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
                // j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i - j,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }
}

不同的二叉搜索树

题目 中等

class Solution {
    public int numTrees(int n) {
        //初始化 dp 数组
        int[] dp = new int[n + 1];
        //初始化0个节点和1个节点的情况
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                //对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
                //一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
}

分割等和子集

题目 中等

class Solution {
    public boolean canPartition(int[] nums) {
        if(nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for(int num : nums) {
            sum += num;
        }
        //总和为奇数,不能平分
        if(sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for(int i = 0; i < n; i++) {
            for(int j = target; j >= nums[i]; j--) {
                //物品 i 的重量是 nums[i],其价值也是 nums[i]
                dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]);
            }
        }
        return dp[target] == target;
    }
}
public class Solution {

    public boolean canPartition(int[] nums) {
        int len = nums.length;
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if ((sum & 1) == 1) {
            return false;
        }

        int target = sum / 2;
        boolean[] dp = new boolean[target + 1];
        dp[0] = true;

        if (nums[0] <= target) {
            dp[nums[0]] = true;
        }
        for (int i = 1; i < len; i++) {
            for (int j = target; nums[i] <= j; j--) {
                if (dp[target]) {
                    return true;
                }
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
        return dp[target];
    }
}

作者:liweiwei1419
链接:https://leetcode.cn/problems/partition-equal-subset-sum/solutions/13059/0-1-bei-bao-wen-ti-xiang-jie-zhen-dui-ben-ti-de-yo/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最后一块石头的重量 II

题目 中等

一开始想,这碰撞完的石头还要把相减的重量放回去,这可咋整啊。越想陷得越深(然后没做出来。。)

看了题解和正确性证明恍然大悟:其实把 2 个石头的差(碰撞完的新石头)放进去,例如 a - b,后面如果再和其它石头碰撞,变成 c - (a - b) = c - a + b,...,最后终究会变成一个多项式,每个石头前要么是 +,要么是 -。(这就和目标和那题蛮像)

进一步想,把最终的多项式,+ 和 - 分别聚在一起,求最后的最小值,也就转换成了求 2 个重量最接近的石头堆(即轻的石头堆最接近总重量的一半),这就和分割等和子集这题很像了。

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int i : stones) {
            sum += i;
        }
        int target = sum >> 1;
        //初始化dp数组
        int[] dp = new int[target + 1];
        for (int i = 0; i < stones.length; i++) {
            //采用倒序
            for (int j = target; j >= stones[i]; j--) {
                //两种情况,要么放,要么不放
                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - 2 * dp[target];
    }
}

目标和

题目 中等

假设加法的总和为 x,那么减法对应的总和就是 sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为 x 的背包,有几种方法

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
	    //如果target过大 sum将无法满足
        if (sum < Math.abs(target)) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        if (size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}

可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]];

一和零

题目 中等

该题背包容量相当于有 2 个维度

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //dp[i][j]表示i个0和j个1时的最大子集
        int[][] dp = new int[m + 1][n + 1];
        int oneNum, zeroNum;
        for (String str : strs) {
            oneNum = 0;
            zeroNum = 0;
            for (char ch : str.toCharArray()) {
                if (ch == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            //倒序遍历
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}

零钱兑换 II

题目 中等

class Solution {
    public int change(int amount, int[] coins) {
        //递推表达式
        int[] dp = new int[amount + 1];
        //初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
        dp[0] = 1;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}

组合总和 Ⅳ

题目 中等

建议看力扣官方题解。我觉得根本不是只是遍历顺序内外层互换一下,本质上是递推公式都改变了

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 1; i <= target; i++) {
            for (int num : nums) {
                if (num <= i) {
                    dp[i] += dp[i - num];
                }
            }
        }
        return dp[target];
    }
}

作者:力扣官方题解
链接:https://leetcode.cn/problems/combination-sum-iv/solutions/740581/zu-he-zong-he-iv-by-leetcode-solution-q8zv/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

零钱兑换

题目 中等

注意初始化,dp[0] = 0,其它为 int 的最大值,防止影响到结果(递推过程中不断取最小值)。

class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[amount + 1];
        //初始化dp数组为最大值
        for (int j = 0; j < dp.length; j++) {
            dp[j] = max;
        }
        //当金额为0时需要的硬币数目为0
        dp[0] = 0;
        for (int i = 0; i < coins.length; i++) {
            //正序遍历:完全背包每个硬币可以选择多次
            for (int j = coins[i]; j <= amount; j++) {
                //只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要
                if (dp[j - coins[i]] != max) {
                    //选择硬币数目最小的情况
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
        return dp[amount] == max ? -1 : dp[amount];
    }
}

完全平方数

题目 中等

class Solution {
    public int numSquares(int n) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[n + 1];
        //初始化
        for (int j = 0; j <= n; j++) {
            dp[j] = max;
        }
        //当和为0时,组合的个数为0
        dp[0] = 0;
        // 遍历物品
        for (int i = 1; i * i <= n; i++) {
            // 遍历背包
            for (int j = i * i; j <= n; j++) {
                dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
            }
        }
        return dp[n];
    }
}

单词拆分

题目 中等

public class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        Set<String> wordDictSet = new HashSet(wordDict);
        boolean[] dp = new boolean[s.length() + 1];
        dp[0] = true;
        for (int i = 1; i <= s.length(); i++) {
            for (int j = 0; j < i; j++) {
                if (dp[j] && wordDictSet.contains(s.substring(j, i))) {
                    dp[i] = true;
                    break;
                }
            }
        }
        return dp[s.length()];
    }
}

作者:力扣官方题解
链接:https://leetcode.cn/problems/word-break/solutions/302471/dan-ci-chai-fen-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

打家劫舍

题目 中等

理解递推公式要注意,是考虑偷而不是一定偷

class Solution {
	public int rob(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		if (nums.length == 1) return nums[0];

		int[] dp = new int[nums.length];
		dp[0] = nums[0];
		dp[1] = Math.max(dp[0], nums[1]);
		for (int i = 2; i < nums.length; i++) {
			dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
		}

		return dp[nums.length - 1];
	}
}

打家劫舍 II

题目 中等

几种情况考虑清楚,去头去尾的这一种情况被另外两种情况包含。

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0)
            return 0;
        int len = nums.length;
        if (len == 1)
            return nums[0];
        return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
    }

    int robAction(int[] nums, int start, int end) {
        int x = 0, y = 0, z = 0;
        for (int i = start; i < end; i++) {
            y = z;
            z = Math.max(y, x + nums[i]);
            x = y;
        }
        return z;
    }
}

打家劫舍 III

题目 中等

确定递推公式:如果是偷当前节点,那么左右孩子就不能偷;如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的。

class Solution {
    // 执行用时:0 ms , 在所有 Java 提交中击败了 100% 的用户
    // 不偷:Max(左孩子不偷,左孩子偷) + Max(右孩子不偷,右孩子偷)
    // root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) +
    // Math.max(rob(root.right)[0], rob(root.right)[1])
    // 偷:左孩子不偷+ 右孩子不偷 + 当前节点偷
    // root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;
    public int rob(TreeNode root) {
        int[] res = robAction1(root);
        return Math.max(res[0], res[1]);
    }

    int[] robAction1(TreeNode root) {
        int res[] = new int[2];
        if (root == null)
            return res;

        int[] left = robAction1(root.left);
        int[] right = robAction1(root.right);

        res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        res[1] = root.val + left[0] + right[0];
        return res;
    }
}

买卖股票的最佳时机

题目 简单

方法一:贪心

class Solution {
    public int maxProfit(int[] prices) {
        // 找到一个最小的购入点
        int low = Integer.MAX_VALUE;
        // res不断更新,直到数组循环完毕
        int res = 0;
        for(int i = 0; i < prices.length; i++){
            low = Math.min(prices[i], low);
            res = Math.max(prices[i] - low, res);
        }
        return res;
    }
}

方法二:动态规划

认真看代码随想录的题解

class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length == 0) return 0;
        int length = prices.length;
        // dp[i][0]代表第i天持有股票的最大收益
        // dp[i][1]代表第i天不持有股票的最大收益
        int[][] dp = new int[length][2];
        int result = 0;
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
        }
        return dp[length - 1][1];
    }
}

买卖股票的最佳时机 II

题目 中等

注意这里和上一题唯一不同的地方,就是推导 dp[i][0] 的时候,第 i 天买入股票的情况

在上一题中,因为股票全程只能买卖一次,所以如果买入股票,那么第 i 天持有股票即 dp[i][0] 一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第 i 天买入股票的时候,所持有的现金可能有之前买卖过的利润

那么第 i 天持有股票即 dp[i][0],如果是第 i 天买入股票,所得现金就是昨天不持有股票的所得现金减去今天的股票价格,即:dp[i - 1][1] - prices[i]

class Solution {
    // 实现1:二维数组存储
    // 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
    // 时间复杂度:O(n),空间复杂度:O(n)
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];     // 创建二维数组存储状态
        dp[0][0] = -prices[0];                   // 初始状态
        dp[0][1] = 0;
        for (int i = 1; i < n; ++i) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);    // 第 i 天,持有股票
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);    // 第 i 天,没有股票
        }
        return dp[n - 1][1];    // 卖出股票收益高于持有股票收益,因此取[0]
    }
}

买卖股票的最佳时机 III

题目 困难

5 种状态搞清楚,具体看代码随想录,这里就不赘述了。

class Solution {
    public int maxProfit(int[] prices) {
        int len = prices.length;
        // 边界判断, 题目中 length >= 1, 所以可省去
        if (prices.length == 0) return 0;

        /*
         * 定义 5 种状态:
         * 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
         */
        int[][] dp = new int[len][5];
        dp[0][1] = -prices[0];
        // 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润
        dp[0][3] = -prices[0];

        for (int i = 1; i < len; i++) {
            dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]);
        }

        return dp[len - 1][4];
    }
}

买卖股票的最佳时机 IV

题目 困难

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][股票状态]
        // 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
        int len = prices.length;
        int[][] dp = new int[len][k*2 + 1];
        
        // dp数组的初始化, 与上一题同理
        for (int i = 1; i < k*2; i += 2) {
            dp[0][i] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 0; j < k*2 - 1; j += 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[len - 1][k*2];
    }
}

最佳买卖股票时机含冷冻期

题目 中等

本题不喜欢代码随想录的 4 种状态的解法,我觉得就用 2 种状态就行,力扣题解中有个评论说的很好,截图如下:

class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length + 1][2];
        dp[1][0] = -prices[0];

        for (int i = 2; i <= prices.length; i++) {
            /*
            dp[i][0] 第i天持有股票收益;
            dp[i][1] 第i天不持有股票收益;
            情况一:第i天是冷静期,不能以dp[i-1][1]购买股票,所以以dp[i - 2][1]买股票,没问题
            情况二:第i天不是冷静期,理论上应该以dp[i-1][1]购买股票,但是第i天不是冷静期说明,第i-1天没有卖出股票,
                则dp[i-1][1]=dp[i-2][1],所以可以用dp[i-2][1]买股票,没问题
             */
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 2][1] - prices[i - 1]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i - 1]);
        }

        return dp[prices.length][1];
    }
}

买卖股票的最佳时机含手续费

题目 中等

public int maxProfit(int[] prices, int fee) {
    int len = prices.length;
    // 0 : 持股(买入)
    // 1 : 不持股(售出)
    // dp 定义第i天持股/不持股 所得最多现金
    int[][] dp = new int[len][2];
    // 考虑买入的时候就支付手续费
    dp[0][0] = -prices[0] - fee;
    for (int i = 1; i < len; i++) {
        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i] - fee);
        dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
    }
    return Math.max(dp[len - 1][0], dp[len - 1][1]);
}

股票系列,从整体来理解,建议看labuladong

最长递增子序列

题目 中等

方法一:动态规划

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length == 0) return 0;
        int[] dp = new int[nums.length];
        int res = 0;
        Arrays.fill(dp, 1);
        for(int i = 0; i < nums.length; i++) {
            for(int j = 0; j < i; j++) {
                if(nums[j] < nums[i]) dp[i] = Math.max(dp[i], dp[j] + 1);
            }
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

作者:Krahets
链接:https://leetcode.cn/problems/longest-increasing-subsequence/solutions/24173/zui-chang-shang-sheng-zi-xu-lie-dong-tai-gui-hua-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法二:贪心 + 二分查找

可以看 动态规划 (包含O (N log N) 解法的状态定义以及解释) 篇的解释

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] tails = new int[nums.length];
        int res = 0;
        for(int num : nums) {
            int i = 0, j = res;
            while(i < j) {
                int m = (i + j) / 2;
                if(tails[m] < num) i = m + 1;
                else j = m;
            }
            tails[i] = num;
            if(res == j) res++;
        }
        return res;
    }
}

作者:Krahets
链接:https://leetcode.cn/problems/longest-increasing-subsequence/solutions/24173/zui-chang-shang-sheng-zi-xu-lie-dong-tai-gui-hua-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最长连续递增序列

题目 简单

注意比较和前一题的不同:不连续递增子序列的跟前 0 - i 个状态有关,连续递增的子序列只跟前一个状态有关

public static int findLengthOfLCIS(int[] nums) {
    int[] dp = new int[nums.length];
    for (int i = 0; i < dp.length; i++) {
        dp[i] = 1;
    }
    int res = 1;
    for (int i = 0; i < nums.length - 1; i++) {
        if (nums[i + 1] > nums[i]) {
            dp[i + 1] = dp[i] + 1;
        }
        res = res > dp[i + 1] ? res : dp[i + 1];
    }
    return res;
}

最长重复子数组

题目 中等

可以定义 dp[i][j] :以下标i - 1为结尾的 A,和以下标j - 1为结尾的 B,最长重复子数组长度为 dp[i][j]。方便遍历,不需要额外初始化。

// 版本一
class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int result = 0;
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];
        
        for (int i = 1; i < nums1.length + 1; i++) {
            for (int j = 1; j < nums2.length + 1; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                    result = Math.max(result, dp[i][j]);
                }
            }
        }
        
        return result;
    }
}

// 版本二: 滚动数组
class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int[] dp = new int[nums2.length + 1];
        int result = 0;

        for (int i = 1; i <= nums1.length; i++) {
            for (int j = nums2.length; j > 0; j--) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[j] = dp[j - 1] + 1;
                } else {
                    dp[j] = 0;
                }
                result = Math.max(result, dp[j]);
            }
        }
        return result;
    }
}

最长公共子序列

题目 中等

递推公式想清楚,尤其是 2 个字符不等的情况

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // 先对dp数组做初始化操作
        for (int i = 1 ; i <= text1.length() ; i++) {
            char char1 = text1.charAt(i - 1);
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1);
                if (char1 == char2) { // 开始列出状态转移方程
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}

不相交的线

题目 中等

直线不能相交,这就是说明在字符串 A 中找到一个与字符串 B 相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。

求最大连线数,本质上就是求最长公共子序列

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[len1][len2];
    }
}

最大子数组和

题目 中等

/**
     * 1.dp[i]代表当前下标对应的最大值
     * 2.递推公式 dp[i] = max (dp[i-1]+nums[i],nums[i]) res = max(res,dp[i])
     * 3.初始化 都为 0
     * 4.遍历方向,从前往后
     * 5.举例推导结果。。。
     *
     * @param nums
     * @return
     */
public static int maxSubArray(int[] nums) {
    if (nums.length == 0) {
        return 0;
    }

    int res = nums[0];
    int[] dp = new int[nums.length];
    dp[0] = nums[0];
    for (int i = 1; i < nums.length; i++) {
        dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
        res = res > dp[i] ? res : dp[i];
    }
    return res;
}

判断子序列

题目 简单

本题不喜欢代码随想录的做法,用双指针或者以下这种做法(本质上和双指针一样的):

双指针法代码如下:

class Solution {
    public boolean isSubsequence(String s, String t) {
        if (s.length() == 0) return true;
        for (int i = 0, j = 0; j < t.length(); j++) {
            if (s.charAt(i) == t.charAt(j)) {
                // 若已经遍历完 s ,则提前返回 true
                if (++i == s.length())
                    return true;
            }
        }
        return false;
    }
}

作者:Krahets
链接:https://leetcode.cn/problems/is-subsequence/solutions/1658262/by-jyd-zeph/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

不同的子序列

题目 困难

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[s.length() + 1][t.length() + 1];
        for (int i = 0; i < s.length() + 1; i++) {
            dp[i][0] = 1;
        }
        
        for (int i = 1; i < s.length() + 1; i++) {
            for (int j = 1; j < t.length() + 1; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                }else{
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        
        return dp[s.length()][t.length()];
    }
}

两个字符串的删除操作

题目 中等

// dp数组中存储word1和word2最长相同子序列的长度
class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return len1 + len2 - dp[len1][len2] * 2;
    }
}

// dp数组中存储需要删除的字符个数
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        
        return dp[word1.length()][word2.length()];
    }
}

编辑距离

题目 困难

有了前几题的铺垫,这题自然而然就做出来了。一上来直接做这题必定很难

public int minDistance(String word1, String word2) {
    int m = word1.length();
    int n = word2.length();
    int[][] dp = new int[m + 1][n + 1];
    // 初始化
    for (int i = 1; i <= m; i++) {
        dp[i][0] = i;
    }
    for (int j = 1; j <= n; j++) {
        dp[0][j] = j;
    }
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            // 因为dp数组有效位从1开始
            // 所以当前遍历到的字符串的位置为i-1 | j-1
            if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
            }
        }
    }
    return dp[m][n];
}

回文子串

题目 中等

方法一:动态规划

class Solution {
    public int countSubstrings(String s) {
        // 动态规划法
        boolean[][] dp = new boolean[s.length()][s.length()];
        int ans = 0;

        for (int j = 0; j < s.length(); j++) {
            for (int i = 0; i <= j; i++) {
                if (s.charAt(i) == s.charAt(j) && (j - i < 2 || dp[i + 1][j - 1])) {
                    dp[i][j] = true;
                    ans++;
                }
            }
        }

        return ans;
    }
}

作者:jawhiow
链接:https://leetcode.cn/problems/palindromic-substrings/solutions/154773/liang-dao-hui-wen-zi-chuan-de-jie-fa-xiang-jie-zho/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法二:双指针(中心扩散)

class Solution6472 {
    public int countSubstrings(String s) {
        // 中心扩展法
        int ans = 0;
        for (int center = 0; center < 2 * s.length() - 1; center++) {
            // left和right指针和中心点的关系是?
            // 首先是left,有一个很明显的2倍关系的存在,其次是right,可能和left指向同一个(偶数时),也可能往后移动一个(奇数)
            // 大致的关系出来了,可以选择带两个特殊例子进去看看是否满足。
            int left = center / 2;
            int right = left + center % 2;

            while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
                ans++;
                left--;
                right++;
            }
        }
        return ans;
    }
}

作者:jawhiow
链接:https://leetcode.cn/problems/palindromic-substrings/solutions/154773/liang-dao-hui-wen-zi-chuan-de-jie-fa-xiang-jie-zho/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最长回文子序列

题目 中等

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len][len];
        for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
            dp[i][i] = 1; // 初始化
            for (int j = i + 1; j < len; j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
                }
            }
        }
        return dp[0][len - 1];
    }
}

 

posted @ 2023-01-28 13:55  幻梦翱翔  阅读(37)  评论(0编辑  收藏  举报