AtCoder Beginner Contest 162
AtCoder Beginner Contest 162
ABCD全暴力
E数学题看不懂,感性理解
F线性dp,非常基础我不会,寄
E - Sum of gcd of Tuples (Hard)
看了题解发现好多做法都是推一堆式子,我实在看不懂(卷积莫反啥啥的呜呜呜)
然后看见这个感觉比较好感性理解:
(来自洛谷题解)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5 + 5, mod = 1e9 + 7;
ll n, k, f[N], ans;
ll qmi(ll a, ll k, ll p){
ll res = 1;
while(k){
if(k & 1)
res = (ll)res * a % p;
a = (ll)a * a % p;
k >>= 1;
}
return res;
}
int main () {
cin >> n >> k;
for (int i = k; i >= 1; i--) {
f[i] = qmi (k / i, n, mod);
for (int j = i + i; j <= k; j += i) {
(f[i] += - f[j] + mod) %= mod;//容斥
}
}
for (int i = 1; i <= k; i++) (ans += 1ll * i * f[i]) %= mod;
cout << ans;
}
//存在多少个{a1,a2,...,an}使得gcd=x
//则所有数都为x的倍数,共(k/x)^n个
F - Select Half
线性dp,分奇偶讨论。
转移:对于 \(a_i\) 放,都是 \(dp_i=a_i+dp_{i-2}\)
到偶数位时:\(a_i\) 不放,则前面的局面固定了,只能时 \(i\) 之前奇数位的和,可以画个图
到奇数位时:\(a_i\) 不放,则转化为 \(i-1\) 的子问题, \(i-1\) 为偶数,即方案为 \(dp_{i-1}\)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 2e5 + 5;
ll a[N], n;
ll f[N], s[N]; //奇数位前缀和
int main () {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
s[i] = s[i-1];
if (i & 1) s[i] += a[i];
}
for (int i = 2; i <= n; i++) {
if (i & 1) f[i] = max (f[i-2] + a[i], f[i-1]);
else f[i] = max (f[i-2] + a[i], s[i-1]);
}
cout << f[n];
}
//妙妙dp,分奇偶讨论,线性地推