【算法原理】FFT

【算法原理】FFT

重要结论:用任意 n+1 个函数上的不同点都可以唯一确定一个 n 次多项式。
(个人理解:代入 n+1 个点就能唯一确定一个 n 元函数的图像)
比如 给定 A(x)=a0+a1x+...+an1xn1,B(x)=b0+b1x+...+bm1xm1,求 C(x)=A(x)B(x)

转化为点表示法之后等价于在两个函数上分别取 n+m+1 个点即
(x1,A(x1)),(x2,A(x2)),...,(xn+m+1,A(xn+m+1))
(x1,B(x1)),(x2,B(x2)),...,(xn+m+1,B(xn+m+1))
即可在 O(n+m) 的复杂度内求出 C(x) 上的 n+m1 个点:
(x1,A(x1)B(x1)),(x2,a(x2)B(x2)),...,(xn+m1,A(xn+m+1)B(xn+m+1))

问题转化为:如何实现系数表示法与点表示法互相快速转化

首先是取点:取复数域上的单位根
如下图,把单位圆等分成 n 份,则有 n 个点,把第 i 份点表示为点 ωni,则有如下性质:

有了上述前置芝士之后,现在讨论如何快速把多项式转化为系数表示法:


然后递归求,每次要处理的长度减半,总长度 n, 最终处理 logn 次。

系数表示法转化为多项式表示法:

证明:

因为递归的写法常数巨大,所以常用迭代的写法:

至此,我已经晕了。以后再多看几遍吧qaq

FFT板子:

#include <bits/stdc++.h>

using namespace std;
const int N = 300010;
const double PI = acos(-1);

int n, m;
struct Complex {
    double x, y;
    Complex operator+ (const Complex& t) const {
        return {x + t.x, y + t.y};
    }
    Complex operator- (const Complex& t) const {
        return {x - t.x, y - t.y};
    }
    Complex operator* (const Complex& t) const {
        return {x * t.x - y * t.y, x * t.y + y * t.x};
    }
}a[N], b[N];
int rev[N], bit, tot;

void fft(Complex a[], int inv) {
    for (int i = 0; i < tot; i ++) {
        if (i < rev[i])    swap(a[i], a[rev[i]]);
    }
    for (int mid = 1; mid < tot; mid <<= 1) {
        auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
        for (int i = 0; i < tot; i += mid * 2) {
            auto wk = Complex({1, 0});
            for (int j = 0; j < mid; j ++, wk = wk * w1) {
                auto x = a[i + j], y = wk * a[i + j + mid];
                a[i + j] = x + y, a[i + j + mid] = x - y;
            }
        }
    }
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 0; i <= n; i ++ ) scanf("%lf", &a[i].x);
    for (int i = 0; i <= m; i ++ ) scanf("%lf", &b[i].x);
    while ((1 << bit) < n + m + 1) bit ++;
    tot = 1 << bit;
    for (int i = 0; i < tot; i ++ )    rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1)); 
    fft(a, 1), fft(b, 1);  //正向一遍
    for (int i = 0; i < tot; i ++ )     a[i] = a[i] * b[i]; 
    fft(a, -1); //反向一遍
    for (int i = 0; i <= n + m; i ++ )    printf("%d ", (int)(a[i].x / tot + 0.5));
}
posted @   Sakana~  阅读(161)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
点击右上角即可分享
微信分享提示