乘法逆元就是求一个 a/b = c(mod m)在已知a%m , b%m 的条件下 求c的解
1 #include <cstdio> 2 #include <cstring> 3 4 using namespace std; 5 #define ll long long 6 const int N = 100005; 7 int val[N]; 8 9 ll ex_gcd(ll a , ll b , ll &x , ll &y) 10 { 11 if(b == 0){ 12 x=1 , y=0; 13 return a; 14 } 15 ll ans = ex_gcd(b,a%b,x,y); 16 ll t=x; 17 x=y,y=t-a/b*y; 18 return ans; 19 } 20 21 ll inv(ll a , ll b , ll mod) 22 { 23 ll x , y; 24 ll d = ex_gcd(b,mod,x,y); 25 return a*x%mod; 26 } 27 28 int main() 29 { 30 int n,m; 31 while(scanf("%d%d" , &n , &m ) == 2) 32 { 33 ll sum = 1; 34 for(int i=0 ; i<n ; i++){ 35 scanf("%d" , val+i); 36 sum = (sum*val[i])%m; 37 } 38 for(int i=0 ; i<n ; i++){ 39 ll ans = (inv(sum , (ll)val[i] , m)+m)%m; 40 if(i==0) printf("%lld" , ans); 41 else printf(" %lld" , ans); 42 } 43 printf("\n"); 44 } 45 return 0; 46 }
我还在坚持,我还未达到我所想,梦~~一直在