假设数据输入时采用如下的格式进行输入:首先输入顶点个数n和边数m,然后输入每条边,每条边的数据占一行,格式为:u,v,表示从顶点u到顶点v的一条有向边

 

这里把欧拉回路的路径输出了出来:

 手写栈:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 using namespace std;
 5 #define N 1005
 6 int first[N],k,degree[N],visit[N];
 7 struct stack{
 8     int top,node[N];
 9 }s;
10 struct Path{
11     int y,next,flag;
12 }path[N<<1];
13 void add(int x,int y)
14 {
15     path[k].y=y,path[k].next=first[x],path[k].flag=k;
16     first[x]=k;
17     k++;
18     path[k].y=x,path[k].next=first[y],path[k].flag=k-1;
19     first[y]=k;
20     k++;
21 }
22 void dfs(int u)
23 {
24     s.node[++s.top]=u;
25     for(int i=first[u];i!=-1;i=path[i].next){
26         if(!visit[path[i].flag]){
27             visit[path[i].flag]=1;
28             dfs(path[i].y);
29             break;
30         }
31     }
32 }
33 void Fleury(int x)
34 {
35     int b;
36     s.top=0;
37     s.node[s.top]=x;
38     while(s.top>=0){
39         b=0;
40         int u=s.node[s.top];
41         for(int i=first[u];i!=-1;i=path[i].next){
42             if(!visit[path[i].flag]){
43                 b=1;
44                 break;
45             }
46         }
47         if(b==0){//如果没有点可以扩展
48             printf("%d ",s.node[s.top]);
49             s.top--;
50         }
51         else{
52             s.top--;
53             dfs(s.node[s.top+1]);
54         }
55     }
56 }
57 int main()
58 {
59     int n,m,u,v;
60     scanf("%d%d",&n,&m);
61     k=0;
62     memset(first,-1,sizeof(first));
63     memset(degree,0,sizeof(degree));
64     memset(visit,0,sizeof(visit));
65     for(int i=0;i<m;i++){
66         scanf("%d%d",&u,&v);
67         add(u,v);
68         degree[u]++,degree[v]++;
69     }
70     int odd=0,st=1;
71     for(int i=1;i<=n;i++){
72         if(degree[i]&1) odd++,st=i;
73     }
74     if(odd==0||odd==2) {Fleury(st);}
75     else printf("No Euler path\n");
76     return 0;
77 }

stl容器栈:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <stack>
 5 using namespace std;
 6 #define N 1005
 7 int first[N],k,degree[N],visit[N];
 8 stack<int> s;
 9 struct Path{
10     int y,next,flag;
11 }path[N<<1];
12 void add(int x,int y)
13 {
14     path[k].y=y,path[k].next=first[x],path[k].flag=k;
15     first[x]=k;
16     k++;
17     path[k].y=x,path[k].next=first[y],path[k].flag=k-1;
18     first[y]=k;
19     k++;
20 }
21 void dfs(int u)
22 {
23     s.push(u);
24     for(int i=first[u];i!=-1;i=path[i].next){
25         if(!visit[path[i].flag]){
26             visit[path[i].flag]=1;
27             dfs(path[i].y);
28             break;
29         }
30     }
31 }
32 void Fleury(int x)
33 {
34     int b;
35     s.push(x);
36     while(!s.empty()){
37         b=0;
38         int u=s.top();
39         for(int i=first[u];i!=-1;i=path[i].next){
40             if(!visit[path[i].flag]){
41                 b=1;
42                 break;
43             }
44         }
45         if(b==0){//如果没有点可以扩展
46             printf("%d ",s.top());
47             s.pop();
48         }
49         else{
50             s.pop();
51             dfs(u);
52         }
53     }
54 }
55 int main()
56 {
57     int n,m,u,v;
58     scanf("%d%d",&n,&m);
59     k=0;
60     memset(first,-1,sizeof(first));
61     memset(degree,0,sizeof(degree));
62     memset(visit,0,sizeof(visit));
63     for(int i=0;i<m;i++){
64         scanf("%d%d",&u,&v);
65         add(u,v);
66         degree[u]++,degree[v]++;
67     }
68     int odd=0,st=1;
69     for(int i=1;i<=n;i++){
70         if(degree[i]&1) odd++,st=i;
71     }
72     if(odd==0||odd==2) {Fleury(st);}
73     else printf("No Euler path\n");
74     return 0;
75 }

 

输入:
9 14
1 2
1 8
2 3
2 8
2 9
3 4
4 5
4 6
4 9
5 6
6 7
6 9
7 8
8 9

结果:

1 2 3 4 5 6 4 9 2 8 7 6 9 8 1

 

 posted on 2014-09-01 12:07  Love风吟  阅读(517)  评论(0编辑  收藏  举报