1 #include <iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 #define LL long long
 5 LL a,b,m,n,d;
 6 void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d)
 7 {
 8     if(b==0){
 9         d=a,x=1,y=0;
10     }
11     else{
12         ex_gcd(b,a%b,x,y,d);
13         LL t=x;
14         x=y,y=t-a/b*y;
15     }
16 }
17 int main()
18 {
19     LL T;
20     cin>>T;
21     for(int i=0;i<T;i++)
22     {
23         LL x,y;
24         cin>>x>>y;
25         if(x%y==0){
26             cout<<1<<' '<<y-1<<endl;
27         }
28         else{
29             a=x/y,b=a+1;
30             ex_gcd(a,b,m,n,d);
31             cout<<m*x<<' '<<n*x<<endl;
32         }
33     }
34     return 0;
35 }

 

Theorem

For any two integers x and k there exists two more integers p and q such that:

<!--[if !vml]--><!--[endif]-->

It’s a fairly easy task to prove this theorem, so we’d not ask you to do that. We’d ask for something even easier! Given the values of x and k, you’d only need to find integers p and q that satisfies the given equation.

<!--[if !supportEmptyParas]-->      <!--[endif]-->

Input

The first line of the input contains an integer, T (1≤T≤1000) that gives you the number of test cases. In each of the following T lines you’d be given two positive integers x and k. You can safely assume that x and k will always be less than 108.

 

Output

For each of the test cases print two integers: p and q in one line. These two integers are to be separated by a single space. If there are multiple pairs of p and q that satisfy the equation, any one would do. But to help us keep our task simple, please make sure that the values, <!--[if !vml]--><!--[endif]--> and <!--[if !vml]--><!--[endif]-->fit in a 64 bit signed integer.

 

对于这道题目来说,要注意上下界的问题,当x%k==0时,它的上界和下界是一样的,因为答案有多种,输出一个即可,所以此时将答案定位1和k-1即可。

在x%k!=0时,它的上界和下界相差1,那么很自然的想到它们的最大公约数为1,所以可以直接用扩展欧几里德算法。

当然因为x是最大公约数的x倍,所以最后答案要乘上x

 

代码如下:

 posted on 2014-07-22 21:50  Love风吟  阅读(165)  评论(0编辑  收藏  举报