HDU3644 2010 Asia Regional Hangzhou Site Online Contest D A Chocolate Manufacturer's Problem

1、判断多边形有向边顺、逆时针:

取最右点p[i],p[i-1]->p[i]与p[i]->p[i+1]成右手关系则为逆时针。

2、判断点与简单多边形位置关系:

参考文献:王学军,沈连婠,朱绍源等.基于左边的点在简单多边形内的判别算法[J].机械工程师,2006,(2):53-54.

给定一个简单多边形,判别点u在多边形G内外的判断算法步骤:
Step1:过u作一水平射线;
Step2:求出射线与简单多边形G的交点;
Step3:若交点为0,则u在G外,结束;
Step4:若交点数大于0,求出与u点距离最近交点v;
Step5:找到交点v所在边的两顶点,记p1为p[i],p2为p[i+1];
Step6:判断交点v是否是顶点,若v与p[i]重合,则p1为p[i-1],若v与p[i+1]重合,则p2为p[i+2];
Step7:判断 vu 到 vp1 沿逆时针方向的角度是否小于 vp2到vp1沿逆时针方向的角度,若是,则u在G内,否则在外,结束。
 
3、模拟退火,在边上选采样点可避免直接采样到多边形外,其他方面在方法上没有特别之处。参数调整比较纠结,改天编译器变了或者HDU数据变了这代码就不一定能AC了。
 
  1 #include<stdio.h>
  2 #include<string.h>
  3 #include<stdlib.h>
  4 #include<math.h>
  5 #include<time.h>
  6 const int maxn = 55;
  7 const double eps = 1e-8;
  8 const double pi = acos(-1.0);
  9 int dcmp(double x)
 10 {
 11     if(x > eps) return 1;
 12     return x < -eps ? -1 : 0;
 13 }
 14 inline double min(double a, double b)
 15 {return a < b ? a : b;}
 16 inline double max(double a, double b)
 17 {return a > b ? a : b;}
 18 inline double Sqr(double x)
 19 {return x * x;}
 20 /**************************************************/
 21 //点及关于点、线的操作 
 22 struct Point
 23 {
 24     double x, y;
 25     Point(){x = y = 0;}
 26     Point(double a, double b)
 27     {x = a, y = b;}
 28     inline Point operator-(const Point &b)const
 29     {return Point(x - b.x, y - b.y);}
 30     inline Point operator+(const Point &b)const
 31     {return Point(x + b.x, y + b.y);}
 32     inline Point operator-()
 33     {return Point(-x, -y);}
 34     inline Point operator*(const double &b)const
 35     {return Point(x * b, y * b);}
 36     inline double dot(const Point &b)const
 37     {return x * b.x + y * b.y;}
 38     inline double cross(const Point &b, const Point &c)const
 39     {return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);}
 40     inline double Dis(const Point &b)const
 41     {return sqrt((*this - b).dot(*this - b));}
 42     inline bool operator<(const Point &b)const
 43     {
 44         if(!dcmp(x - b.x)) return y < b.y;
 45         return x < b.x;
 46     }
 47     inline bool operator>(const Point &b)const
 48     {return b < *this;}
 49     inline bool operator==(const Point &b)const
 50     {return !dcmp(x - b.x) && !dcmp(y - b.y);}
 51     inline bool InLine(const Point &b, const Point &c)const
 52     {return !dcmp(cross(b, c));}
 53     inline bool OnSeg(const Point &b, const Point &c)const//包括端点
 54     {return InLine(b, c) && (*this - c).dot(*this - b) < eps;}
 55     inline bool InSeg(const Point &b, const Point &c)const//不包括端点
 56     {return InLine(b, c) && (*this - c).dot(*this - b) < -eps;}
 57     double ToSeg(const Point&, const Point&)const;
 58 };
 59 /**************************************************/
 60 bool Parallel(const Point &a, const Point &b, const Point &c, const Point &d)
 61 {return !dcmp(a.cross(b, a + d - c));}
 62 Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d)
 63 {
 64     double u = a.cross(b, c), v = b.cross(a, d);
 65     return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
 66 }
 67 double Point::ToSeg(const Point &b, const Point &c)const
 68 {
 69     Point t(x + b.y - c.y, y + c.x - b.x);
 70     if(cross(t, b) * cross(t, c) > eps)
 71         return min(Dis(b), Dis(c));
 72     return Dis(LineCross(*this, t, b, c));
 73 }
 74 bool SegCross(const Point &a, const Point &b, 
 75         const Point &c, const Point &d, Point &p)//包括端点
 76 {
 77     if(Parallel(a, b, c, d)) return false;
 78     if(a.cross(b, c) * a.cross(b, d) <= 0 && c.cross(d, a) * c.cross(d, b) <= 0)
 79     {
 80         p = LineCross(a, b, c, d);
 81         return true;
 82     }
 83     return false;
 84 }
 85 /**************************************************/
 86 Point p[maxn];
 87 int n;
 88 double r;
 89 /**************************************************/
 90 double AngCounterClock(double start, double end)
 91 {return end - start + (end > start - eps ? 2 * pi : 0);}
 92 bool InSimplePolygon(Point u, Point p[], int n/*double neg_inf*/)
 93 //判断点在简单多边形内,不包括边界,多边形点为逆时针
 94 {
 95     double neg_inf = -1e20, angvu, angvp1, angvp2;
 96     Point v(0, u.y), p1, p2, tmp;
 97     int i, id;//距离u最近交点对应线段起始点id
 98     bool flag = false;
 99     p[n] = p[0];
100     //设u->v为水平负向射线
101 /*    for(i = 0, neg_inf = 0; i < n; ++ i) neg_inf = min(neg_inf, p[i].x);
102     neg_inf -= 100.0;    */
103     v.x = neg_inf;
104     for(i = 0; i < n; ++ i)
105     {
106         if(u.OnSeg(p[i], p[i + 1])) return false;
107         if(!SegCross(u, v, p[i], p[i + 1], tmp)) continue;
108         flag = true;
109         if(tmp.x - v.x > eps) v.x = tmp.x, id = i;
110     }
111     if(!flag) return false;
112     p1 = v == p[id] ? p[(id + n - 1) % n] : p[id];
113     p2 = v == p[id + 1] ? p[(id + 2) % n] : p[id + 1];
114     angvu = atan2(u.y - v.y, u.x - v.x);
115     angvp1 = atan2(p1.y - v.y, p1.x - v.x);
116     angvp2 = atan2(p2.y - v.y, p2.x - v.x);
117     return AngCounterClock(angvu, angvp1) < 
118         AngCounterClock(angvp2, angvp1) - eps;
119 }
120 /**************************************************/
121 double PtoPolygon(Point u, Point p[], int n)//点到多边形边、点的最近距离 
122 {
123     int i;
124     double res = 1e120;
125     p[n] = p[0];
126     for(i = 0; i < n; ++ i)
127         res = min(res, u.ToSeg(p[i], p[i + 1]));
128     return res;
129 }
130 /**************************************************/
131 //模拟退火
132 const int maxsam = 20;
133 const int pacelen = 5;
134 const double depace = 0.57;
135 const double endeps = 1e-3;
136 Point sam[maxsam];
137 double mindis[maxsam];
138 bool SA(double r)
139 {
140     int i, j, samnum;
141     Point tmp;
142     double tmpdis;
143     double maxx = -1e30, maxy = -1e30, minx = 1e30, miny = 1e30;
144     for(i = 0; i < n; ++ i)
145     {
146         maxx = max(p[i].x, maxx);
147         maxy = max(p[i].y, maxy);
148         minx = min(p[i].x, minx);
149         miny = min(p[i].y, miny);
150     }
151     samnum = maxsam < n ? maxsam : n;
152     double pace = sqrt(Sqr(maxx - minx) + Sqr(maxy - miny));
153     for(i = 0; i < samnum; ++ i)//随机选边,随机比例选择边上的点作为采样点 
154     {
155         j = rand() % n;
156         sam[i] = p[j] + (p[j + 1] - p[j]) * (rand() / 32767.0);
157         mindis[i] = 0;
158     }
159     for(; pace > endeps; pace *= depace)
160         for(i = 0; i < samnum; ++ i)
161             for(j = 0; j < pacelen; ++ j)
162             {
163                 tmp.x = sam[i].x + cos((double)rand()) * pace;
164                 tmp.y = sam[i].y + cos((double)rand()) * pace;
165                 if(!InSimplePolygon(tmp, p, n)) continue;
166                 tmpdis = PtoPolygon(tmp, p, n);
167                 if(tmpdis > r - endeps) return true;
168                 if(tmpdis > mindis[i])
169                 {
170                     sam[i] = tmp;
171                     mindis[i] = tmpdis;
172                 }
173             }
174     return false;
175 }
176 /**************************************************/
177 void MakeCounterClock(Point p[], int n)//顺时针则反转多边形的有向边 
178 {
179     int i, id = 0;
180     p[n] = p[0];
181     for(i = 0; i < n; ++ i) if(p[i].x > p[id].x) id = i;
182     if(p[id].cross(p[id + 1], p[(id + n - 1) % n]) > eps) return;
183     Point tmp;
184     for(i = n - 1 >> 1; i >= 0; -- i)
185         tmp = p[i], p[i] = p[n - i - 1], p[n - i - 1] = tmp;
186 }
187 int main()
188 {
189     srand(419);
190     while(scanf("%d", &n) && n)
191     {
192         for(int i = 0; i < n; ++ i)
193             scanf("%lf%lf", &p[i].x, &p[i].y);
194         MakeCounterClock(p, n);
195         scanf("%lf", &r);
196         printf(SA(r) ? "Yes\n" : "No\n");
197     }
198     return 0;
199 }

 

posted @ 2012-09-06 17:28  CSGrandeur  阅读(362)  评论(0编辑  收藏  举报