【BZOJ4688】One-Dimensional 矩阵乘法

【BZOJ4688】One-Dimensional

Description

考虑一个含有 N 个细胞的一维细胞自动机。细胞从 0 到 N-1 标号。每个细胞有一个被表示成一个小于 M 的非负整数的状态。细胞的状态会在每个整数时刻发生骤变。我们定义 S(i,t)  表示第 i 个细胞在时刻 t 的状态。在时刻 t+1 的状态被表示为 S(i,t+1)=(A×S(i-1,t)+B×S(i,t)+C×S(i+1,t) )  mod M ,其中 A,B,C 是给定的非负整数。对于 i<0 或 N≤i ,我们定义 S(i,t)=0 。给定一个自动机的定义和其细胞在时刻 0 的初始状态,你的任务是计算时刻 T 时每个细胞的状态。

Input

输入包含多组测试数据。每组数据的第一行包含六个整数 N,M,A,B,C,T ,满足 0<N≤50,0<M≤1000,0≤A,B,C<M,0≤T≤〖10〗^9  。第二行包含 N 个小于 M 的非负整数,依次表示每个细胞在时刻 0 的状态。输入以六个零作为结束。

Output

对于每组数据,输出N个小于M的非负整数,每两个相邻的数字之间用一个空格隔开,表示每个细胞在时刻T的状态。

Sample Input

5 4 1 3 2 0
0 1 2 0 1
5 7 1 3 2 1
0 1 2 0 1
5 13 1 3 2 11
0 1 2 0 1
5 5 2 0 1 100
0 1 2 0 1
6 6 0 2 3 1000
0 1 2 0 1 4
20 1000 0 2 3 1000000000
0 1 2 0 1 0 1 2 0 1 0 1 2 0 1 0 1 2 0 1
30 2 1 0 1 1000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
30 2 1 1 1 1000000000
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 5 2 3 1 1000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

Sample Output

0 1 2 0 1
2 0 0 4 3
2 12 10 9 11
3 0 4 2 1
0 4 2 0 4 4
0 376 752 0 376 0 376 752 0 376 0 376 752 0 376 0 376 752 0 376
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 3 2 2 2 3 3 1 4 3 1 2 3 0 4 3 3 0 4 2 2 2 2 1 1 2 1 3 0

题解:矩乘傻题。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n,m,A,B,C,T;
struct M
{
	int a[60][60];
	int * operator [] (int b) {return a[b];}
	M() {memset(a,0,sizeof(a));}
	M operator * (M b)
	{
		M c;
		int i,j,k;
		for(i=0;i<n;i++)	for(j=0;j<n;j++)	for(k=0;k<n;k++)	c[i][j]=(c[i][j]+a[i][k]*b[k][j])%m;
		return c;
	}
}tr,ans;
void pm(int y)
{
	while(y)
	{
		if(y&1)	ans=ans*tr;
		tr=tr*tr,y>>=1;
	}
}
int main()
{
	while(1)
	{
		scanf("%d%d%d%d%d%d",&n,&m,&A,&B,&C,&T);
		if(!m)	return 0;
		int i;
		memset(tr.a,0,sizeof(tr.a)),memset(ans.a,0,sizeof(ans.a));
		for(i=0;i<n;i++)
		{
			scanf("%d",&ans[0][i]);
			if(i)	tr[i-1][i]=A;
			tr[i][i]=B;
			if(i<n-1)	tr[i+1][i]=C;
		}
		pm(T);
		for(i=0;i<n;i++)	printf("%d%c",ans[0][i],i==n-1?'\n':' ');
	}
}
posted @ 2017-10-15 08:35  CQzhangyu  阅读(327)  评论(0编辑  收藏  举报