【BZOJ1222】[HNOI2001]产品加工 DP
【BZOJ1222】[HNOI2001]产品加工
Description
某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。
Input
输入共n+1行第1行为 n。 n是任务总数(1≤n≤6000)第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。
Output
最少完成时间
Sample Input
5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1
Sample Output
9
题解:DP傻题,用f[i]表示A机器工作了i小时,B机器最少工作了几个小时,背包DP即可。
加了几个特判和memset就Rank2了?
#include <cstdio> #include <iostream> #include <cstring> using namespace std; int n,m,ans; int f[2][30010]; inline int rd() { int ret=0,f=1; char gc=getchar(); while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();} while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret*f; } int main() { n=rd(); int i,j,a,b,c,d,e; memset(f,0x3f,sizeof(f)); f[0][0]=0; for(i=1;i<=n;i++) { a=rd(),b=rd(),c=rd(),d=(i&1),e=d^1; memset(f[d],0x3f,sizeof(f[0][0])*(m+1)),m+=(!a)?c:a; if(a) for(j=a;j<=m;j++) f[d][j]=f[e][j-a]; if(b) for(j=0;j<=m;j++) f[d][j]=(f[d][j]<f[e][j]+b)?f[d][j]:f[e][j]+b; if(c&&(!a||c<a)&&(!b||c<b)) for(j=c;j<=m;j++) f[d][j]=(f[d][j]<f[e][j-c]+c)?f[d][j]:f[e][j-c]+c; } for(ans=1<<30,i=0;i<=m;i++) ans=min(ans,max(i,f[n&1][i])); printf("%d",ans); return 0; }//5 2 1 0 0 5 0 2 4 1 0 0 3 2 1 1
| 欢迎来原网站坐坐! >原文链接<