【BZOJ1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 Treap+并查集
【BZOJ1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居
Description
了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤[1..10^9];Xi,Yi∈整数.当满足下列两个条件之一,两只奶牛i和j是属于同一个群的:
1.两只奶牛的曼哈顿距离不超过C(1≤C≤10^9),即lXi - xil+IYi - Yil≤C.
2.两只奶牛有共同的邻居.即,存在一只奶牛k,使i与k,j与k均同属一个群.
给出奶牛们的位置,请计算草原上有多少个牛群,以及最大的牛群里有多少奶牛
Input
第1行输入N和C,之后N行每行输入一只奶牛的坐标.
Output
仅一行,先输出牛群数,再输出最大牛群里的牛数,用空格隔开.
Sample Input
4 2
1 1
3 3
2 2
10 10
* Line 1: A single line with a two space-separated integers: the number of cow neighborhoods and the size of the largest cow neighborhood.
1 1
3 3
2 2
10 10
* Line 1: A single line with a two space-separated integers: the number of cow neighborhoods and the size of the largest cow neighborhood.
Sample Output
2 3
OUTPUT DETAILS:
There are 2 neighborhoods, one formed by the first three cows and the other being the last cow. The largest neighborhood therefore has size 3.
OUTPUT DETAILS:
There are 2 neighborhoods, one formed by the first three cows and the other being the last cow. The largest neighborhood therefore has size 3.
题解:曼哈顿距离不是太好搞,我们先将坐标系旋转45°,即每个点的坐标变为(x+y,y-x),就变成了切比雪夫距离,即对于每个牛,与它相邻的牛都在一个正方形范围内。
于是我们将所有点按x排序,枚举第i个点,用Treap维护x在[xi-C,xi]中的所有点,每次在Treap找出所有y在[yi-C,yi+C]中的所有点,将他们所在的并查集都与i合并。但是这样的点太多了,不过我们其实只需要找出yi的前驱和后继。因为如果存在yk>yj>yi,且xk,xj∈[xi-C,xi],那么xk和xj一定已经被合并了,不需要重复计算。
#include <cstdio> #include <iostream> #include <algorithm> #include <utility> #define mp(A,B) make_pair(A,B) using namespace std; const int maxn=100010; int n,C,root,sum,ans,tot,pre,nxt; int f[maxn],siz[maxn],vis[maxn]; typedef pair<int,int> pii; struct node { int x,y; }p[maxn]; struct treap { int key,ch[2]; pii v; }tr[maxn]; int rd() { int ret=0,f=1; char gc=getchar(); while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();} while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret*f; } int find(int x) { return (f[x]==x)?x:(f[x]=find(f[x])); } bool cmp(node a,node b) { return a.x<b.x; } void rotate(int &x,int d) { int y=tr[x].ch[d]; tr[x].ch[d]=tr[y].ch[d^1],tr[y].ch[d^1]=x,x=y; } void insert(int &x,pii y) { if(!x) { x=++tot,tr[x].v=y,tr[x].ch[0]=tr[x].ch[1]=0,tr[x].key=rand()*rand(); return ; } int d=(tr[x].v<y); insert(tr[x].ch[d],y); if(tr[tr[x].ch[d]].key>tr[x].key) rotate(x,d); } void del(int &x,pii y) { if(tr[x].v==y) { if(tr[x].ch[0]*tr[x].ch[1]==0) x=tr[x].ch[0]^tr[x].ch[1]; else { int d=tr[tr[x].ch[0]].key<tr[tr[x].ch[1]].key; rotate(x,d),del(tr[x].ch[d^1],y); } return ; } del(tr[x].ch[tr[x].v<y],y); } void getpre(int x,int y) { if(!x) return ; if(tr[x].v.first<=y) pre=x; getpre(tr[x].ch[tr[x].v.first<=y],y); } void getnxt(int x,int y) { if(!x) return ; if(tr[x].v.first>=y) nxt=x; getnxt(tr[x].ch[tr[x].v.first<y],y); } int main() { srand(2333666); n=rd(),C=rd(); int i,j,a,b; for(i=1;i<=n;i++) a=rd(),b=rd(),p[i].x=a+b,p[i].y=b-a,f[i]=i,siz[i]=1; sort(p+1,p+n+1,cmp); for(i=j=1;i<=n;i++) { for(;p[i].x-p[j].x>C;j++) del(root,mp(p[j].y,j)); pre=0,getpre(root,p[i].y); if(pre&&p[pre].y>=p[i].y-C) if(find(pre)!=find(i)) siz[f[i]]+=siz[f[pre]],f[f[pre]]=f[i]; nxt=0,getnxt(root,p[i].y); if(nxt&&p[nxt].y<=p[i].y+C) if(find(nxt)!=find(i)) siz[f[i]]+=siz[f[nxt]],f[f[nxt]]=f[i]; insert(root,mp(p[i].y,i)); } for(i=1;i<=n;i++) if(find(i)==i) sum++,ans=max(ans,siz[i]); printf("%d %d\n",sum,ans); return 0; }
| 欢迎来原网站坐坐! >原文链接<