【BZOJ4195】[Noi2015]程序自动分析 并查集

【BZOJ4195】[Noi2015]程序自动分析

Description

 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

Sample Output

NO
YES

HINT

 在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。
1≤n≤1000000
1≤i,j≤1000000000

 题解:并查集

由于相等关系有传递性,不相等关系无传递性,我们就可以先不管不等关系,按相等关系建立并查集,然后判断不等关系是否成立就行了

本题需要离散化

 

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1000010;
int n,m;
int x[maxn],y[maxn],e[maxn],f[maxn<<1];
struct node
{
    int num,org,k;
}s[maxn<<1];
int find(int x){return (f[x]==x)?x:(f[x]=find(f[x]));}
int readin()
{
    int ret=0;    char gc=getchar();
    while(gc<'0'||gc>'9')    gc=getchar();
    while(gc>='0'&&gc<='9')    ret=ret*10+gc-'0',gc=getchar();
    return ret;
}
bool cmp(node a,node b)
{
    return a.num<b.num;
}
void work()
{
    m=readin();
    int i;
    for(i=1;i<=m;i++)
    {
        x[i]=readin(),y[i]=readin(),e[i]=readin();
        s[i*2-1].num=x[i],s[i*2].num=y[i];
        s[i*2-1].org=s[i*2].org=i;
        s[i*2-1].k=0,s[i*2].k=1;
    }
    sort(s+1,s+2*m+1,cmp);
    int pre=0,n=0;
    for(i=1;i<=2*m;i++)
    {
        if(pre<s[i].num)    pre=s[i].num,n++;
        if(!s[i].k)    x[s[i].org]=n;
        else    y[s[i].org]=n;
    }
    for(i=1;i<=n;i++)    f[i]=i;
    for(i=1;i<=m;i++)    if(e[i]&&find(x[i])!=find(y[i]))    f[f[x[i]]]=f[y[i]];
    for(i=1;i<=m;i++)
    {
        if(!e[i]&&find(x[i])==find(y[i]))
        {
            printf("NO\n");
            return ;
        }
    }
    printf("YES\n");
    return ;
}
int main()
{
    int T=readin();
    while(T--)    work();
}

 

posted @ 2017-02-17 10:27  CQzhangyu  阅读(353)  评论(0编辑  收藏  举报