【BZOJ3772】精神污染 DFS序+主席树

【BZOJ3772】精神污染

Description

兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大的县,是集经济和文化于一体的一大地区,是日本西部门户,海陆空交通设施发达。濑户内海沿岸气候温暖,多晴天,有日本少见的贸易良港神户港所在的神户市和曾是豪族城邑“城下町”的姬路市等大城市,还有以疗养地而闻名的六甲山地等。
兵库县官方也大力发展旅游,为了方便,他们在县内的N个旅游景点上建立了n-1条观光道,构成了一棵图论中的树。同时他们推出了M条观光线路,每条线路由两个节点x和y指定,经过的旅游景点就是树上x到y的唯一路径上的点。保证一条路径只出现一次。
你和你的朋友打算前往兵库县旅游,但旅行社还没有告知你们最终选择的观光线路是哪一条(假设是线路A)。这时候你得到了一个消息:在兵库北有一群丧心病狂的香菜蜜,他们已经选定了一条观光线路(假设是线路B),对这条路线上的所有景点都释放了【精神污染】。这个计划还有可能影响其他的线路,比如有四个景点1-2-3-4,而【精神污染】的路径是1-4,那么1-3,2-4,1-2等路径也被视为被完全污染了。
现在你想知道的是,假设随便选择两条不同的路径A和B,存在一条路径使得如果这条路径被污染,另一条路径也被污染的概率。换句话说,一条路径被另一条路径包含的概率。

Input

第一行两个整数N,M
接下来N-1行,每行两个数a,b,表示A和B之间有一条观光道。
接下来M行,每行两个数x,y,表示一条旅游线路。

Output

所求的概率,以最简分数形式输出。

Sample Input

5 3
1 2
2 3
3 4
2 5
3 5
2 5
1 4

Sample Output

1/3
样例解释
可以选择的路径对有(1,2),(1,3),(2,3),只有路径1完全覆盖路径2。

HINT

100%的数据满足:N,M<=100000
(题意只有最后一句是有用的,其余都是废话。)
题解:理解一下:对于每一个询问x,y,将y的子树中的所有节点都加到x的子树中的所有线段树中去。
具体做法:离散化+DFS处理入栈出栈序+求LCA+主席树
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=100010;
int n,m,cnt,tot,nm;
long long ans,dev;
int to[maxn<<1],next[maxn<<1],head[maxn],qt[maxn],qn[maxn],qh[maxn],root[maxn<<1];
int size[maxn],top[maxn],fa[maxn],son[maxn],deep[maxn],Q[maxn<<1],qin[maxn],qout[maxn];
struct node
{
    int sum,ls,rs;
}s[maxn*39];
int readin()
{
    int ret=0,f=1;    char gc=getchar();
    while(gc<'0'||gc>'9')    {if(gc=='-')f=-f;gc=getchar();}
    while(gc>='0'&&gc<='9')    ret=ret*10+gc-'0',gc=getchar();
    return ret*f;
}
void add(int a,int b)
{
    to[cnt]=b;
    next[cnt]=head[a];
    head[a]=cnt++;
}
void dfs1(int x)
{
    size[x]=1;
    Q[++Q[0]]=x;
    qin[x]=++nm;
    for(int i=head[x];i!=-1;i=next[i])
    {
        if(to[i]!=fa[x])
        {
            fa[to[i]]=x;
            deep[to[i]]=deep[x]+1;
            dfs1(to[i]);
            size[x]+=size[to[i]];
            if(size[to[i]]>size[son[x]])    son[x]=to[i];
        }
    }
    qout[x]=++nm;
}
void dfs2(int x,int tp)
{
    top[x]=tp;
    if(son[x])    dfs2(son[x],tp);
    for(int i=head[x];i!=-1;i=next[i])
        if(to[i]!=son[x]&&to[i]!=fa[x])
            dfs2(to[i],to[i]);
}
int getlca(int x,int y)
{
    while(top[x]!=top[y])
    {
        if(deep[top[x]]>deep[top[y]])    x=fa[top[x]];
        else    y=fa[top[y]];
    }
    if(deep[x]>deep[y])    return y;
    return x;
}
void insert(int x,int &y,int l,int r,int pos,int val)
{
    if(pos>r)    return ;
    y=++tot;
    if(l==r)
    {
        s[y].sum=s[x].sum+val;
        return ;
    }
    int mid=l+r>>1;
    if(pos<=mid)    s[y].rs=s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos,val);
    else    s[y].ls=s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos,val);
    s[y].sum=s[s[y].ls].sum+s[s[y].rs].sum;
}
int query(int x1,int x2,int x3,int x4,int l,int r,int a,int b)
{
    if(a<=l&&r<=b)
        return s[x1].sum+s[x2].sum-s[x3].sum-s[x4].sum;
    int mid=l+r>>1;
    if(b<=mid)
        return query(s[x1].ls,s[x2].ls,s[x3].ls,s[x4].ls,l,mid,a,b);
    if(a>mid)
        return query(s[x1].rs,s[x2].rs,s[x3].rs,s[x4].rs,mid+1,r,a,b);
    return query(s[x1].ls,s[x2].ls,s[x3].ls,s[x4].ls,l,mid,a,b)+
        query(s[x1].rs,s[x2].rs,s[x3].rs,s[x4].rs,mid+1,r,a,b);
}
long long gcd(long long a,long long b)
{
    return (b==0)?a:gcd(b,a%b);
}
int main()
{
    n=readin(),m=readin();
    int i,j,a,b,c;
    memset(head,-1,sizeof(head));
    for(i=1;i<n;i++)
    {
        a=readin(),b=readin();
        add(a,b),add(b,a);
    }
    deep[1]=1;
    dfs1(1),dfs2(1,1);
    for(i=1;i<=m;i++)
    {
        a=readin(),b=readin();
        qt[i]=b;
        qn[i]=qh[a];
        qh[a]=i;
    }
    for(i=1;i<=n;i++)
    {
        a=Q[i];
        root[a]=root[fa[a]];
        for(j=qh[a];j;j=qn[j])
        {
            b=qt[j];
            insert(root[a],root[a],1,nm,qin[b],1),insert(root[a],root[a],1,nm,qout[b],-1);
        }
    }
    for(i=1;i<=n;i++)
    {
        a=i;
        for(j=qh[a];j;j=qn[j])
        {
            b=qt[j];
            c=getlca(a,b);
            ans+=query(root[a],root[b],root[c],root[fa[c]],1,nm,qin[c],qin[a]);
            ans+=query(root[a],root[b],root[c],root[fa[c]],1,nm,qin[c],qin[b]);
            ans-=query(root[a],root[b],root[c],root[fa[c]],1,nm,qin[c],qin[c]);
            ans--;
        }
    }
    dev=(long long)m*(m-1)/2;
    long long temp=gcd(ans,dev);
    printf("%lld/%lld",ans/temp,dev/temp);
    return 0;
}
posted @ 2017-01-18 13:35  CQzhangyu  阅读(395)  评论(0编辑  收藏  举报