[题解]Codeforces Round #254 (Div. 2) A - DZY Loves Chessboard
链接:http://codeforces.com/contest/445/problem/A
描述:一个n*m的棋盘,有一些格子不能放棋子。现在把黑白棋子往上放,要求放满且相邻格子的棋子颜色不同。输出一种可行解。
思路:脑筋急转弯。。。
下过国际象棋的都知道,棋盘本身可以染色成为黑白相间的格子,毁掉其中的格子后也不会影响其2-SAT的性质。直接输出再加一个判断当前格子是否能放棋子就可以了。
我的实现:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 #define MaxN 120 6 char str[MaxN][MaxN]; 7 int n,m; 8 int main() 9 { 10 int i,j,cur; 11 scanf("%d%d",&n,&m); 12 for(i=1;i<=n;++i) 13 scanf("%s",str[i]+1); 14 cur=0; 15 for(i=1;i<=n;++i) 16 { 17 for(j=1;j<=m;++j) 18 { 19 cur=(cur+1)%2; 20 if(str[i][j]=='-') 21 printf("-"); 22 else if(cur) 23 printf("B"); 24 else 25 printf("W"); 26 } 27 if(m%2==0) 28 cur=(cur+1)%2; 29 printf("\n"); 30 } 31 return 0; 32 }
效率:
然后要说的是,zyy太蠢了,一看完题目没多想就觉得是经典的2-SAT问题,然后就写啊写,结果WA了。。。。zyy觉得最多是个时间超限或者内存超限,怎么可能会WA掉!!!容后查错吧,先挖坑~~
我的实现(经典2-SAT写法,WA):
1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 #define MaxN 20020 5 #define MaxM 160020 6 #define Maxn 120 7 int n,m,N; 8 struct node 9 { 10 int v; 11 node *next; 12 }; 13 node edge[MaxM]; 14 node *cnt=&edge[0]; 15 node *adj[MaxN]; 16 node edge2[MaxM]; 17 node *cnt2=&edge2[0]; 18 node *adj2[MaxN]; 19 int dfn[MaxN],low[MaxN],dcnt; 20 int stack[MaxN],top; 21 int Belong[MaxN],Num[MaxN],opp[MaxN],scc; 22 int In[MaxN],q[MaxN],col[MaxN]; 23 bool Instack[MaxN],ans[MaxN]; 24 char str[Maxn][Maxn]; 25 inline void Addedge(int u,int v) 26 { 27 node *p=++cnt; 28 p->v=v; 29 p->next=adj[u]; 30 adj[u]=p; 31 } 32 inline void Addedge2(int u,int v) 33 { 34 node *p=++cnt2; 35 p->v=v; 36 p->next=adj2[u]; 37 adj2[u]=p; 38 } 39 void Read() 40 { 41 scanf("%d%d",&n,&m); 42 N=n*m; 43 int i,j; 44 for(i=1;i<=n;++i) 45 { 46 scanf("%s",str[i]+1); 47 for(j=1;j<=m;++j) 48 if(str[i][j]=='.') 49 { 50 if(i>1&&str[i-1][j]=='.') 51 { 52 Addedge((i-1)*m+j,(i-2)*m+j+N); 53 Addedge((i-1)*m+j+N,(i-2)*m+j); 54 } 55 if(j>1&&str[i][j-1]=='.') 56 { 57 Addedge((i-1)*m+j,(i-1)*m+j-1+N); 58 Addedge((i-1)*m+j+N,(i-1)*m+j-1); 59 } 60 } 61 } 62 } 63 void Tarjan(int u) 64 { 65 int v; 66 dfn[u]=low[u]=++dcnt; 67 stack[++top]=u; 68 Instack[u]=true; 69 for(node *p=adj[u];p;p=p->next) 70 { 71 v=p->v; 72 if(!dfn[v]) 73 { 74 Tarjan(v); 75 low[u]=min(low[u],low[v]); 76 } 77 else if(Instack[v]) 78 low[u]=min(low[u],dfn[v]); 79 } 80 if(dfn[u]==low[u]) 81 { 82 scc++; 83 do 84 { 85 v=stack[top]; 86 top--; 87 Instack[v]=false; 88 Belong[v]=scc; 89 Num[scc]++; 90 }while(v!=u); 91 } 92 } 93 bool Work() 94 { 95 int i; 96 for(i=1;i<=N*2;i++) 97 if(!dfn[i]) 98 Tarjan(i); 99 for(i=1;i<=N;++i) 100 { 101 if(Belong[i]==Belong[i+N]) 102 return false; 103 opp[Belong[i]]=Belong[i+N]; 104 opp[Belong[i+N]]=Belong[i]; 105 } 106 int u,v; 107 for(i=1;i<=N*2;i++) 108 for(node *p=adj[i];p;p=p->next) 109 { 110 v=p->v; 111 if(Belong[i]!=Belong[v]) 112 { 113 Addedge2(Belong[v],Belong[i]); 114 In[Belong[i]]++; 115 } 116 } 117 int l=0,r=0; 118 for(i=1;i<=scc;i++) 119 if(!In[i]) 120 { 121 q[r]=i; 122 r++; 123 } 124 while(l<r) 125 { 126 u=q[l]; 127 l++; 128 if(!col[u]) 129 { 130 col[u]=1; 131 col[opp[u]]=-1; 132 } 133 for(node *p=adj2[u];p;p=p->next) 134 { 135 v=p->v; 136 In[v]--; 137 if(!In[v]) 138 { 139 q[r]=v; 140 r++; 141 } 142 } 143 } 144 for(i=1;i<=N*2;++i) 145 if(col[Belong[i]]==1) 146 ans[i]=true; 147 return true; 148 } 149 void Print() 150 { 151 if(Work()) 152 { 153 int i,j; 154 for(i=1;i<=n;++i) 155 { 156 for(j=1;j<=m;++j) 157 { 158 if(str[i][j]=='-') 159 printf("-"); 160 else if(ans[(i-1)*m+j]) 161 printf("B"); 162 else 163 printf("W"); 164 } 165 printf("\n"); 166 } 167 } 168 else 169 printf("NIE\n"); 170 } 171 int main() 172 { 173 Read(); 174 Print(); 175 return 0; 176 }
欢迎大神指点!!