NP
题目描述 LYK 喜欢研究一些比较困难的问题,比如 np 问题。 这次它又遇到一个棘手的 np 问题。
问题是这个样子的:有两个数 n 和 p,求 n 的阶乘 对 p 取模后的结果。
LYK 觉得所有 np 问题都是没有多项式复杂度的算法的,所以它打算求助即将要参加 noip 的你,帮帮 LYK 吧!
输入格式(np.in) 输入一行两个整数 n,p。
输出格式(np.out) 输出一行一个整数表示答案。
输入样例 3 4 输出样例 2
数据范围 对于 20%的数据:n,p<=5。
对于 40%的数据:n,p<=1000。
对于 60%的数据:n,p<=10000000。
对于 80%的数据:n<=10^18,p<=10000000。
对于另外 20%的数据:n<=10^18,p=1000000007。
其中大致有 50%的数据满足 n>=p。
思路:
对于小的n,或者P<=N 的情况,是很容易做出的。
但对于n< p 而p=1000000007 的时候,直接跑是不行了。
先预处理,1e7 *i (1<=i<100) 对P取余的结果 ,就一百个数。
然后 对于这之间的数可以1e7内得到
打表
#include<iostream> #include<queue> #include<vector> #include<cstdio> #include<algorithm> using namespace std; long long n,p,ans=1; int main() { freopen("a.out","w",stdout); n=10000000;p=1000000007; for(long long j=1;j<=100;j++) { for(long long i=n*(j-1)+1;i<=n*j;i++) ans=(ans*i)%p; cout<<ans<<','; } return 0; }
程序
#include<iostream> #include<queue> #include<vector> #include<cstdio> #include<algorithm> using namespace std; long long n,p,ans=1,now; const int a[100]={682498929,491101308,76479948,723816384,67347853,27368307,625544428,199888908,888050723,927880474, 281863274,661224977,623534362,970055531,261384175,195888993,66404266,547665832,109838563,933245637,724691727, 368925948,268838846,136026497,112390913,135498044,217544623,419363534,500780548,668123525,128487469,30977140, 522049725,309058615,386027524,189239124,148528617,940567523,917084264,429277690,996164327,358655417,568392357, 780072518,462639908,275105629,909210595,99199382,703397904,733333339,97830135,608823837,256141983,141827977, 696628828,637939935,811575797,848924691,131772368,724464507,272814771,326159309,456152084,903466878,92255682, 769795511,373745190,606241871,825871994,957939114,435887178,852304035,663307737,375297772,217598709,624148346, 671734977,624500515,748510389,203191898,423951674,629786193,672850561,814362881,823845496,116667533,256473217, 627655552,245795606,586445753,172114298,193781724,778983779,83868974,315103615,965785236,492741665,377329025, 847549272,698611116}; int main() { freopen("np.in","r",stdin); freopen("np.out","w",stdout); cin>>n>>p; if(n>=p) { cout<<0; return 0; } if(p==1000000007) { if(n<10000000) now=1; else now=a[n/10000000-1]; for(int i=n/10000000*10000000+1;i<=n;i++) now=(now*i)%p; cout<<now; return 0; } for(long long i=2;i<=n;i++) { ans=(ans*i)%p; if(!ans) { cout<<0; return 0; } } cout<<ans; return 0; }