去魅Sora

其实现原理非常像之前学的图像压缩的兄弟——视频压缩:

  • VAE Encoder(变分视频压缩,将其压缩到低维的隐空间中降低计算量) 借用Google DeepMind的NaViT (2023.07) 支持了原始比例和分辨率,从而使其采样灵活并提高取景构图能力。
  • Transform Diffusion (从视频数据中学习分布,并根据条件生成新视频) 借用OpenAI DALL-E 3 (2023.09) 里的图像描述方案生成了高质量Video Caption(视频描述),即文本-视频对,这使 Sora 能够准确遵循用户提示生成高质量的视频。
  • VAE Decoder (视频解压缩)

与单纯的视频压缩不同的是,他把视频内容分块,并且为每一块内容映射了语义(似乎包括大量的视频解说),并根据视频对应的语义去生成新视频,这样就达成了AI模型“理解”提示条件,并生成视频内容的效果。

Sora获得如此高质量的视觉生成效果,像官方文档说的:使用互联网规模的数据,大量不同比例、分辨率的视频,以及大量的解说视频和为视频生成的描述性文本(GPT——Vision标注)。

参考:
Sora官方技术文档
https://openai.com/research/video-generation-models-as-world-simulators
红博士说 https://mp.weixin.qq.com/s/H8UYQ27nNPbW2jetseJgYQ

posted @   浪矢-CL  阅读(23)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App
点击右上角即可分享
微信分享提示