POJ 1061 青蛙的约会

 

                        青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 82859   Accepted: 14426

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

Source

 
1,先用GCD化解方程  2,用扩展GCD求出一组解   3,化为最小正整数解
复制代码
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 
 5 using namespace std;
 6 
 7 typedef long long int LL;
 8 
 9 LL GCD(LL a,LL b)
10 {
11     if(b==0) return a;
12     return GCD(b,a%b);
13 }
14 
15 LL EX_GCD(LL a,LL b,LL& x,LL& y)
16 {
17     if(b==0)
18     {
19         x=1;y=0;
20         return a;
21     }
22     else
23     {
24         int ret=EX_GCD(b,a%b,x,y);
25         int t=x;
26         x=y;
27         y=t-a/b*y;
28         return ret;
29     }
30 }
31 
32 int main()
33 {
34 
35     LL x,y,m,n,l,a,b,c,d,A,B,C;
36     scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l);
37     a=l,b=n-m,c=x-y;
38     d=GCD(a,b);
39     if(c%d!=0)
40     {
41         puts("Impossible");
42         return 0;
43     }
44     else
45     {
46         A=a/d;B=b/d;C=c/d;
47         LL xx,yy;
48         EX_GCD(A,B,xx,yy);
49         yy=yy*C;
50         if(A<0) A=-A;
51         yy=(yy%A+A)%A;
52         printf("%I64d\n",yy);
53     }
54     return 0;
55 }
复制代码

 

 
posted @   码代码的猿猿  阅读(228)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· .NET Core GC压缩(compact_phase)底层原理浅谈
· Winform-耗时操作导致界面渲染滞后
· Phi小模型开发教程:C#使用本地模型Phi视觉模型分析图像,实现图片分类、搜索等功能
· 语音处理 开源项目 EchoSharp
点击右上角即可分享
微信分享提示