康托展开
康托展开的公式
把一个整数X展开成如下形式:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a
其中,a为整数,并且0<=a
康托展开的应用实例
{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+0*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s;
cin>>s;
int len=s.length();
int sum=0;
for(int i=0;i<len;i++)
{
int a=0;
int b=1;
for(int j=i+1;j<len;j++)
if(s[j]<s)
{
a=a+1;
}
//sum+=a*(8-i)!
for(int k=1;k<len-i;k++)
{
b*=k;
}
sum+=a*b;
}
cout<<sum<<endl;
return 0;
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· 手把手教你更优雅的享受 DeepSeek
· AI工具推荐:领先的开源 AI 代码助手——Continue
· 探秘Transformer系列之(2)---总体架构
· V-Control:一个基于 .NET MAUI 的开箱即用的UI组件库
· 乌龟冬眠箱湿度监控系统和AI辅助建议功能的实现