POJ 1050 To the Max

枚举行之间的组合,在求最大连续和。
上学期好像就做过的。。。。。和City Game有种一样的感觉。

To the Max
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 35605   Accepted: 18697

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2

Sample Output

15

Source

 1 #include <iostream>
 2 #include <cstring>
 3 
 4 using namespace std;
 5 
 6 int a[110][110];
 7 int b[110];
 8 
 9 int main()
10 {
11     int n;
12     cin>>n;
13     for(int i=0;i<n;i++)
14         for(int j=0;j<n;j++)
15           cin>>a[i][j];
16 
17     int maxn=-999999999;
18 
19     for(int i=0;i<n;i++)
20     {
21        for(int j=0;j<=i;j++)///[i,j]之间的和
22        {
23            memset(b,0,sizeof(b));
24            for(int l=0;l<n;l++)
25                for(int k=j;k<=i;k++)
26                {
27                    b[l]+=a[k][l];
28                }
29            int sum=0;
30            for(int m=0;m<n;m++)
31            {
32                sum+=b[m];
33                maxn=max(maxn,sum);
34                if(sum<0) sum=0;
35            }
36        }
37     }
38 
39     cout<<maxn<<endl;
40 
41     return 0;
42 }

 

 

posted @ 2013-05-20 19:38  码代码的猿猿  阅读(145)  评论(0编辑  收藏  举报