【bzoj4709】[Jsoi2011]柠檬 决策单调性+dp
Description
Flute 很喜欢柠檬。它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬。贝壳一共有 N (1 ≤ N
≤ 100,000) 只,按顺序串在树枝上。为了方便,我们从左到右给贝壳编号 1..N。每只贝壳的大小不一定相同,
贝壳 i 的大小为 si(1 ≤ si ≤10,000)。变柠檬的魔法要求,Flute 每次从树枝一端取下一小段连续的贝壳,并
选择一种贝壳的大小 s0。如果 这一小段贝壳中 大小为 s0 的贝壳有 t 只,那么魔法可以把这一小段贝壳变成 s
0t^2 只柠檬。Flute 可以取任意多次贝壳,直到树枝上的贝壳被全部取完。各个小段中,Flute 选择的贝壳大小 s
0 可以不同。而最终 Flute 得到的柠檬数,就是所有小段柠檬数的总和。Flute 想知道,它最多能用这一串贝壳
变出多少柠檬。请你帮忙解决这个问题。
Input
第 1 行:一个整数,表示 N。
第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si。
Output
仅一个整数,表示 Flute 最多能得到的柠檬数。
Sample Input
5
2
2
5
2
3
Sample Output
21
//Flute 先从左端取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段
里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一
只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有
比这更优的方案了。
Sol
显然题目转化为序列分割问题,而且每个分出来的序列首尾肯定相同(否则去掉之后这一段贡献不变,产生了新的段使得最终答案更大),所以我们得到普及组dp:
令\(f[i]\)表示前i位的最大价值,那么:\(f[i]=f[j-1]+a[j]*(s[i]-s[j]+1)^2\),s[i]代表前i个数里a[i]出现的次数 。
tle,考虑优化。我们发现后面那个平方随着i的上升它是单调不降的,所以我们对于每个权值开个单调栈保存当前最优解的j,然后用栈顶更新即可。
每次要入栈之前,如果栈底第二个元素f值已经大于栈顶了,说明栈顶没用了,就弹出直到栈顶大于栈顶第二个元素的贡献为止。但是可能出现后面的超过栈顶但是第二个元素没超过的情况,所以我们在每次入栈之前,要先判断第二个元素和第一个元素超过当前i的时间,如果第二个超过时间比第一个早,弹出栈顶直到情况改变为止。
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll f[100010];int n,a[100010];int cnt[100010],s[100010];vector<int>q[10010];
ll cal(int x,int y){return f[x-1]+(ll)a[x]*y*y;}
int sol(int x,int y)
{
int l=1,r=n,ret=n+1;
while(l<=r)
{
int mid=l+r>>1;
if(cal(x,mid-s[x]+1)>=cal(y,mid-s[y]+1)) ret=mid,r=mid-1;
else l=mid+1;
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);a[i]=x;s[i]=++cnt[x];
while(q[x].size()>=2&&sol(q[x][q[x].size()-2],q[x][q[x].size()-1])<=sol(q[x][q[x].size()-1],i)) q[x].pop_back();
q[x].push_back(i);
while(q[x].size()>=2&&sol(q[x][q[x].size()-2],q[x][q[x].size()-1])<=s[i]) q[x].pop_back();
f[i]=cal(q[x][q[x].size()-1],s[i]-s[q[x][q[x].size()-1]]+1);
}
printf("%lld\n",f[n]);
}