【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论

Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

​ 输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

​ 输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3
1 1
1 2
1 3
1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。
以上所有数均为正整数。

Sol

显然,根据sg定理,这道题每一堆石子是独立的一个游戏,我们只要对每一堆分别求出其sg值,然后异或起来即可,若异或值不为0则先手必胜,若异或值为0则后手必胜。而分石子会产生若干个子游戏,也是异或起来就行了。

在求sg值的时候,如果我们枚举n个石子分成i份,那么一定是分成\(n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor+1\)的和\(i-n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor\)的。所以我们可以直接判断这两种大小的堆数,如果是奇数那么就会产生贡献,如果是偶数则不会,然后异或起来即可。但是这样的时间复杂度是\(O(n^2)\),显然超时了,考虑优化。因为\(\lfloor\frac{n}{i}\rfloor\)只有\(\sqrt{n}\)种取值,我们就可以只取到这些取值,然后再把i+1也判断一下(奇偶性会影响到模意义下的结果),这样的时间复杂度是\(O(n\sqrt{n})\),可以通过本题,代码中给出递推求sg函数的写法。

Code

#include <bits/stdc++.h>
using namespace std;
int n,ans,T,f,x,sg[100005],vis[100005];
void getsg()
{
    for(int g=f;g<=100000;g++)
    {
        for(int i=2,last;i<=g;i=last+1)
        {
            int k=g/i,k2=g%i,k1=i-k2;last=g/k;
            vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
            if(i+1<=min(g,last)) k2=g%(i+1),k1=i+1-k2,vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
        }
        for(int i=0;;i++) if(vis[i]!=g){sg[g]=i;break;}
    }
}
int main()
{
    for(scanf("%d%d",&T,&f),getsg();T--;)
    {
        scanf("%d",&n);ans=0;
        for(int i=1;i<=n;i++) scanf("%d",&x),ans^=sg[x];
        printf("%d%c",ans?1:0,T?' ':'\n');
    }
}
posted @ 2018-08-07 15:12  CK6100LGEV2  阅读(167)  评论(0编辑  收藏  举报