bzoj 2326 矩阵快速幂
思路:矩阵快速幂搞一搞。
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define PLI pair<LL, int> #define ull unsigned long long using namespace std; const int N = 3e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int Mod = 1e9 + 7; LL n; int mod; struct Matrix { int a[3][3]; Matrix() { memset(a, 0, sizeof(a)); } void init() { for(int i = 0; i < 3; i++) a[i][i] = 1; } Matrix operator * (const Matrix &B) const { Matrix C; for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) for(int k = 0; k < 3; k++) C.a[i][j] = (C.a[i][j] + 1ll * a[i][k] * B.a[k][j]) % mod; return C; } Matrix operator ^ (LL b) { Matrix C; C.init(); Matrix A = (*this); while(b) { if(b & 1) C = C * A; A = A * A; b >>= 1; } return C; } } M; int main() { int Mat[3][3] = { {1, 1, 0}, {0, 1, 1}, {0, 0, 1} }; for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) M.a[i][j] = Mat[i][j]; scanf("%lld%d", &n, &mod); Matrix A; A.init(); bool flag = true; for(LL i = 1000000000000000000; i; i /= 10) { LL p = 0; if(n >= i) { if(flag) p = n - i + 1; else p = i * 10 - i; flag = false; } M.a[0][0] = i % mod * 10 % mod; A = A * (M ^ p); } printf("%d\n", (A.a[0][1] + A.a[0][2]) % mod); return 0; } /* */