hdu多校第三场

Problem D. Euler Function

思路:打表找找规律。

复制代码
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>

using namespace std;

const int N=1e5+7;
const int M=1e4+7;
const int inf=0x3f3f3f3f;
const LL INF=0x3f3f3f3f3f3f3f3f;
const int mod=1e9 + 7;

int n;
int main() {
    int T; scanf("%d", &T);
    while(T--) {
        scanf("%d", &n);
        if(n == 1) {
            puts("5");
        } else if(n == 2) {
            puts("7");
        } else if(n == 3) {
            puts("8");
        } else {
            printf("%d\n", n + 5);
        }
    }
    return 0;
}
View Code
复制代码

 

Problem F. Grab The Tree

思路:把全部数字异或起来,看是不是0就行了,如果不是0,先手取最高位的那个。

复制代码
#include<bits/stdc++.h>
using namespace std;
const int N = 100100;

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;scanf("%d",&n);
        long long ans=0;
        for(int i=0;i<n;i++){
            long long tt;
            scanf("%lld",&tt);
            ans^=tt;
        }
        for(int i=0;i<n-1;i++){
            int l,r;
            scanf("%d%d",&l,&r);
        }
        if(ans==0) printf("D\n");
        else printf("Q\n");
    }
}
/*
2
3
2 2 2
1 2
1 3
*/
View Code
复制代码

 

Problem L. Visual Cube

思路:模拟画立方体。。

复制代码
#include<bits/stdc++.h>
using namespace std;
int c,k,g;

int mp[1000][1000];
void gz()
{
    int y=c*2+k*2+1;
    int x=g*2+k*2+1;
   // printf("%d\n",y);
    for(int i=0;i<2*k;i++)
    {
        for(int j=0;j<2*k-i;j++)
            mp[i][j]='.';
    }
    int cnt=x-1;
    int ks=c*2;
    for(int i=0;i<2*k;i++)
    {
        for(int j=0;j<2*k-i;j++)
            mp[cnt][ks+j+1]='.';
        ks++;
        cnt--;
    }

    for(int i=0;i<x;i++)
    {
        bool judge=true;
        for(int j=0;j<y;j++)
        {
            if(mp[i][j]=='.')
                continue;
            else if(judge){
                judge=false;
                if(i%2==0){
                    int cnt=0;
                    for(;;j+=2)
                    {
                        if(cnt==c) break;

                        mp[i][j]='+';

                        mp[i][j+1]='-';
                        cnt++;
                    }
                    j--;
                }
                else{
                        int cnt=0;
                    for(;;j+=2){
                        if(cnt==c) break;
                        if(mp[i][0]=='.') mp[i][j]='/';
                        else mp[i][j]='|';
                        mp[i][j+1]='.';
                        cnt++;
                    }
                    j--;
                }

            }
            else{
                if(i%2==0)
                {
                    if(j==y-1) mp[i][j]='+';
                    else{
                        mp[i][j++]='+';
                        mp[i][j]='.';
                    }
                }
                else{
                   if(j%2) mp[i][j]='/';
                   else mp[i][j]='|';
                }

            }
        }
    }





    for(int i=0;i<x;i++){
        for(int j=0;j<y;j++){
            printf("%c",mp[i][j]);
        }puts("");
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(mp,0,sizeof(mp));
        scanf("%d%d%d",&c,&k,&g);
        gz();
    }
}
View Code
复制代码

 

Problem A. Ascending Rating

思路:正常思路应该是倒着维护单调递减的队列就好啦,然后我正着扫暴力搞的。。

复制代码
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>

using namespace std;

const int N=1e7+7;
const int M=1e4+7;
const int inf=0x3f3f3f3f;
const LL INF=0x3f3f3f3f3f3f3f3f;

int n, m, k, p, q, r, a[N], mod, stk[N << 1], head, rear, stk2[N], tot, rt[N];

int main() {
    int T; scanf("%d", &T);
    while(T--) {
        head = 10000001, rear = 10000000, tot = 0;
        scanf("%d%d%d%d%d%d%d", &n, &m, &k, &p, &q, &r, &mod);
        for(int i = 1; i <= k; i++) scanf("%d", &a[i]);
        a[n + 1] = inf;
        for(int i = k + 1; i <= n; i++) a[i] = (1ll * p * a[i - 1] + 1ll *  q * i + r) % mod;

        stk2[++tot] = n + 1;

        for(int i = n; i >= 1; i--) {
            while(a[stk2[tot]] <= a[i]) tot--;
            rt[i] = stk2[tot];
            stk2[++tot] = i;
        }

        for(int i = 1; i <= m; i++) {
            if(a[i] > 0 && (rear < head || a[i] > a[stk[rear]])) stk[++rear] = i;
        }

//        printf("%d: %d %d\n", 1, a[stk[rear]], rear - head + 1);
        LL A = 0, B = 0;
        if(rear >= head) {
            A += a[stk[rear]] ^ 1;
            B += (rear - head + 1) ^ 1;
        } else {
            A += 0 ^ 1;
            B += 0 ^ 1;
        }


        for(int i = 2; i <= n - m + 1; i++) {
            int j = i + m - 1;
            if(a[j] > 0 && (rear < head || a[j] > a[stk[rear]])) stk[++rear] = j;
            if(head <= rear && stk[head] < i) {
                int down = i, up = j; 
                tot = 0;
                if(rear > head) up = stk[head + 1] - 1;
                while(down <= up) {
                    if(a[down] > 0) stk2[++tot] = down;
                    down = rt[down];
                }
                head++;
                for(int w = tot; w >= 1; w--) stk[--head] = stk2[w];
            }
//            puts("");
//            for(int w = head; w <= rear; w++) printf("%d ", stk[w]);
//            puts("");
            if(rear >= head) {
                A += a[stk[rear]] ^ i;
                B += (rear - head + 1) ^ i;
            } else {
                A += 0 ^ i;
                B += 0 ^ i;
            }
        }

//        cout << ans << endl;
        printf("%lld %lld\n", A, B);
    }
    return 0;
}
/*
1
10 6 10 5 5 5 5
0 0 0 0 0 0 0 0 0 0
*/
View Code
复制代码

 

Problem C. Dynamic Graph Matching

思路:状压dp,没加进一条边或者删掉一条边,用dp维护这个过程。

复制代码
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}

using namespace std;

const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1024+10,maxn=10+10,inf=0x3f3f3f3f;

ll ans[maxn],dp[N];
int n,m;
inline int read() {
    char ch = getchar(); int x = 0, f = 1;
    while(ch < '0' || ch > '9') {
        if(ch == '-') f = -1;
        ch = getchar();
    } while('0' <= ch && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    } return x * f;
}

int main()
{
    int T=read();
    while(T--)
    {
        memset(dp, 0, sizeof(dp));
        n=read(),m=read();

        dp[0] = 1;
        int up = 1 << n;
        for(int i=0;i<m;i++)
        {
            memset(ans,0,sizeof ans);
            char op[2];int u,v;

            scanf("%s",op);u=read(),v=read();
            u--, v--;

            if(op[0]=='+')
            {
                for(int s = 0; s < up; s++) {
                    if(((s >> u) & 1) || ((s >> v) & 1)) continue;
                    int nxs = s | (1 << u) | (1 << v);
                    dp[nxs] += dp[s];
                    if(dp[nxs] >= mod) dp[nxs] -= mod;
                }
            }
            else
            {
                for(int s = 0; s < up; s++) {
                    if(((s >> u) & 1) || ((s >> v) & 1)) continue;
                    int nxs = s | (1 << u) | (1 << v);
                    dp[nxs] -= dp[s];
                    if(dp[nxs] < 0) dp[nxs] += mod;
                }
            }

            for(int s = 1; s < up; s++) {
                int S = s, cnt = 0;
                while(S) {
                    cnt++;
                    S -= S & -S;
                }
                ans[cnt / 2] += dp[s];
                if(ans[cnt / 2] >= mod) ans[cnt / 2] -= mod;
            }

            for(int j=1;j<n/2;j++)
                printf("%lld ",ans[j]);
            printf("%lld\n",ans[n/2]);
        }
    }
    return 0;
}
View Code
复制代码

 

 

补题**************************************************************

Problem G. Interstellar Travel

思路:求个上凸包的同时维护字典序最小。 比赛的时候没有调出来。。。

复制代码
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>
#define pLL pair<long long, long long>
#define piii pair<int, pair<int,int>>

using namespace std;

const int N=2e5 + 7;
const int M=1e4 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double PI = acos(-1);

int n, cnt, tot;
map<pLL, bool> mp;
struct Point {
    LL x, y;
    int id;
    Point(LL x = 0, LL y = 0) : x(x), y(y) { }

}p[N], ch[N];

typedef Point Vector;

Point operator + (Vector A, Vector B) {return Point(A.x + B.x, A.y + B.y);}
Point operator - (Vector A, Vector B) {return Point(A.x - B.x, A.y - B.y);}
bool operator == (const Vector &A, const Point &B) {return A.x - B.x == 0 && A.y - B.y == 0;}
bool operator < (const Vector &A, const Vector &B) {return A.x < B.x || (A.x == B.x && A.y < B.y);}

LL Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;}

bool check(int m, int i) {
    LL val = Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]);
    if(val > 0 || val == 0 && p[i].id < ch[m - 1].id) return true;
    return false;
}

int ConvexHull(Point *p, int n, Point *ch) {
    sort(p, p + n);
    int m = 0;
    for(int i = 0; i < n; i++) {
        while(m > 1 && check(m, i)) m--;
        ch[m++] = p[i];
    }
    return m;
}

int main() {
    int T; scanf("%d", &T);
    while(T--) {
        mp.clear(); tot = 0; cnt = 0;
        scanf("%d", &n);
        for(int i = 0; i < n; i++) {
            LL x, y; scanf("%lld%lld", &x, &y);
            if(mp.find(mk(x, y)) == mp.end()) {
                p[tot].x = x; p[tot].y = y;
                p[tot++].id = i + 1;
                mp[mk(x, y)] = true;
            }
        }
        cnt = ConvexHull(p, tot, ch);
        printf("%d", ch[0].id);
        for(int i = 1; i < cnt; i++) {
            printf(" %d", ch[i].id);
        }
        puts("");
    }
    return 0;
}
/*
1
9
1 0
4 2
5 2
3 2
2 1
6 2
7 1
6 2
8 0
1 9

*/
View Code
复制代码

 

Problem I. Random Sequence

思路:dp[ i ][ v1 ][ v2 ][ v3 ]表示到第 i 个数, a[ i ] 为 v1, gcd(a[ i ], a[ i - 1 ]) =  v2,gcd(a[ i ], a[ i - 1 ], a[ i - 2 ]) = v3的期望

因为v3|v2  v2|v1所以状态数不是很多可以预处理一些东西然后直接转移。

复制代码
#include<bits/stdc++.h>
#define LL long long
#define ll long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg

using namespace std;

const int N = 100 + 7;
const int M = 1e5 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = 1e9 + 7;
const int maxn = 1e5;

int n, m, cur, a[N], v[N], f[2][N][N][N], gcd[N][N], d[N][N], inv[N];

void init() {
    for(int i = 0; i <= 100; i++) gcd[i][0] = gcd[0][i] = i;
    for(int i = 1; i <= 100; i++)
        for(int j = 1; j <= i; j++)
            gcd[i][j] = gcd[j][i] = gcd[j][i % j];

    inv[1] = 1;
    for(int i = 2; i <= 100; i++)
        inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;

    for(int i = 1; i <= 100; i++) {
        d[i][0] = 0;
        for(int j = 1; j <= i; j++)
            if(i % j == 0) d[i][++d[i][0]] = j;
    }
}

void add(int &a, int b) {
    a += b; if(a >= mod) a -= mod;
}
int main() {
    init();
    int T; scanf("%d", &T);
    while(T--) {

        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
        for(int i = 1; i <= m; i++) scanf("%d", &v[i]);
        memset(f, 0, sizeof(f));

        if(a[1]) {
            f[cur][a[1]][a[1]][a[1]] = 1;
        } else {
            for(int i = 1; i <= m; i++)
                f[cur][i][i][i] = inv[m];
        }

        for(int i = 2; i <= n; i++) {

            cur ^= 1;
            for(int j = 1; j <= m; j++) {
                for(int k = 1; k <= d[j][0]; k++) {
                    int v2 = d[j][k];
                    for(int z = 1; z <= d[v2][0]; z++) {
                        int v3 = d[v2][z];
                        f[cur][j][v2][v3] = 0;
                    }
                }
            }

            for(int j = 1; j <= m; j++) {
                for(int k = 1; k <= d[j][0]; k++) {
                    int v2 = d[j][k];
                    for(int z = 1; z <= d[v2][0]; z++) {
                        int v3 = d[v2][z];
                        int val = f[cur ^ 1][j][v2][v3];
                        if(a[i]) {
                            if(i <= 3) add(f[cur][a[i]][gcd[a[i]][j]][gcd[a[i]][v2]], val);
                            else add(f[cur][a[i]][gcd[a[i]][j]][gcd[a[i]][v2]], 1ll * val * v[gcd[a[i]][v3]] % mod);
                        } else {
                            val = 1ll * val * inv[m] % mod;
                            for(int t = 1; t <= m; t++) {
                                if(i <= 3) add(f[cur][t][gcd[t][j]][gcd[t][v2]], val);
                                else add(f[cur][t][gcd[t][j]][gcd[t][v2]], 1ll * val * v[gcd[t][v3]] % mod);
                            }
                        }
                    }
                }
            }
        }
        
        int ans = 0;
        for(int j = 1; j <= m; j++) {
            for(int k = 1; k <= d[j][0]; k++) {
                int v2 = d[j][k];
                for(int z = 1; z <= d[v2][0]; z++) {
                    int v3 = d[v2][z];
                    add(ans, f[cur][j][v2][v3]);
                }
            }
        }

        printf("%d\n", ans);
    }
    return 0;
}
/*
*/
View Code
复制代码

 

Problem M. Walking Plan

思路:将步数分块,dp[ A ][ i ][ j ]表示刚好用A * 100步从i - > j 所需要的最小消耗,

dis[ B ][ i ][ j ]表示至少用B步从 i - > j所需要的最小消耗。

对于一个询问S, T, K来说 ans = min{dp[ K / 100 ][ S ][ i ] + dis[ K % 100 ][ i ][ T ]}     1 <= i <= n

复制代码
#include<bits/stdc++.h>
#define LL long long
#define ll long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg

using namespace std;

const int N = 50 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = 1e9 + 7;
const int maxn = 1e5;

int n, m, dis[202][N][N], Map[N][N];

struct Matrix
{
    int r, c;
    int a[51][51];
    Matrix(int r = 0, int c = 0)
    {
        this -> r = r;
        this -> c = c;
        for(int i = 0; i < r; i++)
            for(int j = 0; j < c; j++)
                a[i][j] = inf;
    }

    Matrix operator * (const Matrix &B) const
    {
        Matrix C(r, c);
        for(int i=0;i<r;i++)
            for(int j=0;j<c;j++)
                for(int k=0;k<r;k++)
                    C.a[i][j] = min(C.a[i][j], a[i][k] + B.a[k][j]);
        return C;
    }
} M[101];

int main() {
    int T; scanf("%d", &T);
    while(T--) {
        memset(dis, inf, sizeof(dis));
        memset(Map, inf, sizeof(Map));
        scanf("%d%d", &n, &m);
        for(int i = 0; i < n; i++) {
            Map[i][i] = 0;
            dis[0][i][i] = 0;
        }

        for(int i = 1; i <= m; i++) {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            u--, v--;
            Map[u][v] = min(Map[u][v], w);
            dis[1][u][v] = min(dis[1][u][v], Map[u][v]);
        }

        for(int k = 2; k <= 201; k++) {
            for(int i = 0; i < n; i++) {
                for(int j = 0; j < n; j++) {
                    for(int z = 0; z < n; z++) {
                        dis[k][i][j] = min(dis[k][i][j], dis[k - 1][i][z] + dis[1][z][j]);
                    }
                }
            }
        }

        for(int i = 1; i <= 100; i++) M[i].r = M[i].c = n;


        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                M[1].a[i][j] = dis[100][i][j], M[0].a[i][j] = dis[0][i][j];


        for(int k = 200; k >= 0; k--)
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    dis[k][i][j] = min(dis[k][i][j], dis[k + 1][i][j]);

        for(int i = 2; i <= 100; i++) {
            M[i] = M[i - 1] * M[1];
        }

        int q; scanf("%d", &q);
        while(q--) {
            int S, T, K;
            scanf("%d%d%d", &S, &T, &K);
            S--, T--;
            int id1 = K / 100, id2 = K % 100;
            int ans = inf;
            for(int i = 0; i < n; i++) {
                ans = min(ans, M[id1].a[S][i] + dis[id2][i][T]);
            }
            if(ans == inf) puts("-1");
            else printf("%d\n", ans);
        }
    }
    return 0;
}

/*
*/
View Code
复制代码

 

posted @   NotNight  阅读(194)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示