Codeforces 293E Close Vertices 点分治 + 树状数组
点分治之后用树状数组维护个数。
#include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 998244353; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n, l, w; vector<PII> G[N]; bool ban[N]; int son[N]; LL ans; struct Bit { int a[N]; inline void modify(int x, int v) { for(int i = x; i < N; i += i & -i) a[i] += v; } inline int sum(int x) { int ans = 0; for(int i = x; i; i -= i & -i) ans += a[i]; return ans; } inline int query(int L, int R) { if(L > R) return 0; return sum(R) - sum(L - 1); } } bit; int getSubTreeSize(int u, int fa) { son[u] = 1; for(auto &e : G[u]) { if(e.se == fa || ban[e.se]) continue; son[u] += getSubTreeSize(e.se, u); } return son[u]; } PII getSubTreeCenter(int u, int fa, int all) { PII res = mk(inf, -1); int s = 1, m = 0; for(auto &e : G[u]) { if(e.se == fa || ban[e.se]) continue; res = min(res, getSubTreeCenter(e.se, u, all)); m = max(m, son[e.se]); s += son[e.se]; } m = max(m, all - s); res = min(res, mk(m, u)); return res; } void getDis(int u, int fa, int ld, int wd, vector<PII> &ds) { if(ld <= l && wd <= w) ans++; ds.push_back(mk(wd, ld)); for(auto& e : G[u]) { if(e.se == fa || ban[e.se]) continue; getDis(e.se, u, ld + 1, wd + e.fi, ds); } } LL calc(vector<PII> &ds) { LL ans = 0; int n = ds.size(); if(n <= 1) return 0; sort(ds.begin(), ds.end()); for(auto &t : ds) bit.modify(t.se, 1); for(int i = 0, j = n - 1; i < n && i <= j; i++) { while(ds[i].fi + ds[j].fi > w && i <= j) { bit.modify(ds[j].se, -1); j--; } if(i > j) break; bit.modify(ds[i].se, -1); if(ds[i].se <= l) ans += bit.sum(l - ds[i].se); } return ans; } void solveSubPro(int u) { getSubTreeSize(u, 0); int s = getSubTreeCenter(u, 0, son[u]).se; ban[s] = true; vector<PII> ds, tds; for(auto &e : G[s]) { if(ban[e.se]) continue; tds.clear(); getDis(e.se, s, 1, e.fi, tds); ans -= calc(tds); ds.insert(ds.end(), tds.begin(), tds.end()); } ans += calc(ds); for(auto &e : G[s]) { if(ban[e.se]) continue; solveSubPro(e.se); } } int main() { scanf("%d%d%d", &n, &l, &w); for(int i = 1; i < n; i++) { int p, w; scanf("%d%d", &p, &w); G[p].push_back(mk(w, i + 1)); G[i + 1].push_back(mk(w, p)); } solveSubPro(1); printf("%lld\n", ans); return 0; } /* */