多项式 EXP 之三

推歌:Summer Fireworks of Love - karatoPαnchii feat. はるの .

仔细想想好像我比较喜欢的歌要么比较安静要么是核(?

K8He:SoyTony 你也不行↑啊


欲证明:

\[[z^n](\exp F)(z)=\sum_{\sum ic_i=n}\dfrac1{(\sum c_i)!}\prod_if_i^{c_i} \]

其实直接做就行了:

\[\begin{aligned}(\exp F)(z)&=\exp\sum_{n\ge 0}f_iz^i\\&=\prod_{n\ge 0}\exp f_iz^i\\&=\prod_{n\ge 0}\sum_{t\ge 0}\dfrac1{t!}f_i^tz^{nt}\\ [z^n](\exp F)(z)&=\sum_{\sum ic_i=n}\dfrac1{(\sum c_i)!}\prod_if_ic^i\end{aligned} \]

或者一些别的方向:

\[\begin{aligned}(\exp F)(z)&=\sum_{t\ge 0}\dfrac{F(z)^t}{t!}\\&=\sum_{t\ge 0}\dfrac1{t!}\left(\sum_{n\ge 0}f_nz^n\right)^t\\&=\sum_{t\ge 0}\dfrac1{t!}\sum_{\sum c_i=t}\dbinom t{c_1,c_2,\cdots,c_k}z^{\sum ic_i}\prod_if_ic^i\\&=\sum_{n\ge 0}z^n\sum_{\sum ic_i=n}\dfrac1{(\sum c_i)!}\prod_if_ic^i\end{aligned} \]

注:第三个等号处枚举每个 \(i\) 被选择的次数 .

其实怎么做都是非常简易,唉有点无聊了,推荐大家看看 CF1338D,很好玩的 .

The bpm of next part is...

posted @ 2023-09-06 19:21  yspm  阅读(68)  评论(2编辑  收藏  举报
😅​