2023.2.23 闲话
19:03 SoyTony
Hey Jude / Beatles
Hey Jude don't make it bad
Take a sad song and make it better
Remember to let her into your heart
Then you can start to make it better
Hey Jude don't be afraid
You were made to go out and get her
The minute you let her under your skin
Then you begin to make it better
And anytime you feel the pain hey Jude refrain
Don't carry the world upon your shoulders
For well you know that it's a fool who plays it cool
By making his world a little colder
Na na na na na na na na na
Hey Jude don't let me down
You have found her now go and get her
Remember to let her into your heart
Then you can start to make it better
So let it out and let it in hey Jude begin
You're waiting for someone to perform with
And don't you know that it's just you hey Jude you'll do
The movement you need is on your shoulder
Na na na na na na na na na
Hey Jude don't make it bad
Take a sad song and make it better
Remember to let her under your skin
Then you'll begin to make it
Better better better better better better oh
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
Na na na na na na na na na na na hey Jude
现在我这闲话感觉是真的有「闲」的感觉了(
我的观点是这个风格有点 EI「营业日志」的味道了,不过难度肯定是远远比不上
定义 \(v_2(x)\) 为 \(x\) 中因子 \(2\) 的数量,\(c_2(x)\) 为 \(x\) 在 2 进制下非 \(0\) 位的数量 .
则有
睿智恒等式 II
\[v_2(x!)+c_2(x)=x \]
其实我不想叫这个睿智恒等式的,不过实在是太睿智了 .
令 \(h(x)=v_2(x!)+c_2(x)\),考虑证明 \(h(x+y)=h(x)+h(y)\),这和原命题等价 .
第一种思路:
令 \(a\circ b\) 为计算 \(a+b\) 时在 2 进制下的进位次数 .
那么根据定义可以导出 \(a\circ b=c_2(a)+c_2(b)-c_2(a+b)\) .
又根据 Kummer 定理,\(a\circ b=v_2\left(\dbinom{a+b}a\right)=v_2((a+b)!)-v_2(a!)-v_2(b!)\) .
于是有 \(c_2(a)+c_2(b)-c_2(a+b)=v_2((a+b)!)-v_2(a!)-v_2(b!)\),移项即得 \(h(x+y)=h(x)+h(y)\),证毕 .
第二种思路:
注意到 \(v_2(x)\) 的组合意义其实就是 2 进制下末尾 \(0\) 的个数(在 GNU C++ 表现为 __builtin_ctz
),这样我们就把 \(v_2\) 和 \(c_2\) 统一到了同一个模型(2 进制).
考察 \(c_2(x-1)\),\(x-1\) 其实就是把末尾的 \(0\) 全翻转了,于是可以得到 \(c_2(x-1)=c_2(x)+v_2(x)-1\) .
于是 \(v_2(x)+c_2(x)-c_2(x-1)=-1\) 为定值 .
自然可得 \(v_2(a+b)+c_2(a+b)-c_2(a+b-1)=v_2(a)+c_2(a)-c_2(a-1)\) .
把 \(v_2(x)\) 换成 \(v_2(x!)-v_2((x-1)!)\),即可得到 \(h(a+b)-h(a+b-1)=h(a)-h(a-1)\),即 \(h(a+b)-h(a+b-1)=h(a)+h(b)-h(a-1)-h(b)\) .
类似地,可以得到 \(h(a+b)-h(a+b-1)=h(a)+h(b)-h(a)-h(b-1)\) .
这相当于导出了 \((a,b)\to(a,b+1)\) 和 \((a,b)\to(a+1,b)\) 的推导路线,\(a=b=0\) 显然成立然后归纳即可,证毕 .
不觉得这很酷吗?作为一名 OIer,我觉得这太酷了,很符合我对位运算的想象,科技并带着趣味
以下是博客签名,正文无关
本文来自博客园,作者:yspm,转载请注明原文链接:https://www.cnblogs.com/CDOI-24374/p/17148795.html
版权声明:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0)进行许可。看完如果觉得有用请点个赞吧 QwQ