整除分块套杜教筛为什么是 O(n^2/3) 的
假设我们要筛一个东西叫做 \(f\) .
记
\[D(n)=\left\{n,\left\lfloor\dfrac n2\right\rfloor,\left\lfloor\dfrac n3\right\rfloor,\left\lfloor\dfrac n4\right\rfloor,\cdots\right\}
\]
那么我们知道杜教筛在计算 \(f(n)\) 时实际上是对 \(D(n)\) 中的所有数都计算了一遍 \(f(n)\) 并存入了缓存 .
然而我们整除分块的过程就是求 \(D(n)\) 里面这些东西,所以说实际上只筛了一次 \(f\),其他全部在查表 .
于是复杂度是 \(O(n^{2/3})\) .
Reference: https://mivik.blog.luogu.org/mivik-round-4-solution-dream
以下是博客签名,正文无关
本文来自博客园,作者:Jijidawang,转载请注明原文链接:https://www.cnblogs.com/CDOI-24374/p/15998234.html
版权声明:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0)进行许可。看完如果觉得有用请点个赞吧 QwQ