qbxt数学五一Day4
1. 随机试验
定义:
- 不能预先确知结果
- 试验之前可以预测所有可能结果或范围
- 可以在相同条件下重复实验
样本空间:随机试验所有可能结果组成的集合 .
分类:离散样本空间、无穷样本空间
样本空间的任意一个子集称之为 事件 .
事件发生:在一次试验中,事件的一个样本点发生
- 必然事件:样本空间
- 不可能事件:空集
事件 \(A,B\) 的关系与运算:
- 包含:和集合里的一样
- 相等:和集合里的一样
- 互斥:\(A\cap B=\varnothing\)
- 补:和集合里的补集一样,记作 \(\overline A\)
- 和:和集合里的并集一样,记作 \(A+B\)
- 差:和集合里的差集一样,记作 \(A-B\)
- 积:和集合里的交集一样,记作 \(AB\)
运算律:
- 交换律:\(A+B=B+A\),\(AB=BA\) .
- 结合律:\((A+B)+C=A+(B+C)\),\((AB)C=A(BC)\)
- 分配律:\((A+B)C=AC+BC\),\((AB)+C=(A+C)(B+C)\) .
- 对偶律:\(\overline{A+B}=\overline A\cdot\overline B\),\(\overline{AB}=\overline A+\overline B\) .
2. 概率
1. 平凡
定义:为样本空间 \(S\) 的每一个事件定义一个实数,这个实数称为 概率 . 事件 \(A\) 的概率记作 \(P(A)\) .
有:
- \(0\le P(A)\le 1\) .
- \(P(S)=1\) .
- 若 \(AB=\varnothing\),则 \(P(A+B)=P(A)+P(B)\) .
性质:
- \(P(\varnothing)=0\) .
- 若 \(A_1A_2\cdots A_n=\varnothing\),则 \(P(\sum_{i=1}^n A_i)=\sum_{i=1}^n P(A_i)\) .
- 若 \(A\subset B\),则 \(P(B-A)=P(B)-P(A)\) .
- 一般的,\(P(B-A)=P(B)-P(AB)\) .
- \(P(A+B)=P(A)+P(B)-P(AB)\) .
2. 条件概率
定义已知事件 \(B\) 发生时事件 \(A\) 发生的概率为 \(P(A|B)=\dfrac{P(AB)}{P(B)}\)
移项即得乘法法则:\(P(AB)=P(A|B)P(B)\) .
性质(其实和普通的差不多):
- \(P(\varnothing | A)=0\)
- 若 \(A_1A_2\cdots A_n=\varnothing\),则 \(P(\sum_{i=1}^n A_i | B)=\sum_{i=1}^n P(A_i | B)\) .
- \(P(\overline B | A)=1-P(B|A)\)
- \(P(A+B | C)=P(A | C)+P(B | C)-P(AB | C)\) .
贝叶斯公式:
若 \(B_1,B_2,\cdots,B_n\) 是样本空间的一个划分,则有
\[P(B_i|A)=\dfrac{P(A|B_i)P(B_i)}{\sum\limits_{i=0}^n P(A|B_j)P(B_j)} \]
Proof:
如果两个事件满足 \(P(AB)=P(A)P(B)\)(即 \(P(B|A)=P(B)\)),那么称他们 独立 .
3. 期望
期望就是平均事件发生的情况,定义:
例如,投掷一个骰子期望投到 \(3.5\) .
期望有如下性质:
- [重要] \(E(c_1X_1+c_2X_2+\cdots+c_nX_n)=c_1E(X_1)+c_2E(x_2)+\cdots+c_nE(x_n)\)(线性性)
- 如果 \(X_1,X_2\) 独立,则 \(E(X_1X_2)=E(X_1)E(X_2)\)
习题
1
\(n\times m\) 的矩形
每次随机刷掉一个矩形
问 \(k\) 次之后期望刷掉了多少个格子
\(n,m\le 1000,k\le 100\)
期望染的格子数 = 每个格子染的状态的期望之和 = 每个格子被染色的期望 .
2
检验矩阵乘法式 \(AB=C\) 是否成立
\(A,B,C\) 均为 \(n\times n\) 矩阵,\(n\le 1000\) .
随机弄几个 \(n\times 1\) 矩阵 \(D\),然后检验是否有
3
给定平面上 \(n\) 个点
找到一个最小的圆覆盖住他们
暴力是 \(O(n^3)\) 的,随机打乱点的顺序后是期望 \(O(n)\) 的 [表情](分析每个 if
的进入条件)
钟神的伪代码:
point p[2333];
circle o;
random_shuffle(p+1,p+n+1);
for (int i=1;i<=n;i++)
if (p[i] not in o)//3/i
{
o = circle(p[i],0);//p[i]为圆心 0为半径
for (int j=1;j<i;j++)
if (p[j] not in o)
{
o = circle(p[i],p[j]);//p[i] p[j]距离为直径
for (int k=1;k<j;k++)
if (p[k] not in o)
o=circle(p[i],p[j],p[k]);
}
}
4
\(n\) 次操作,第 \(i\) 次操作成功的概率为 \(p_i\) .
成功记为 \(1\) 否则记为 \(0\) .
连续 \(x\) 个 \(1\) 会贡献 \(x^3\) 的分数,求期望分数
以下是博客签名,正文无关
本文来自博客园,作者:Jijidawang,转载请注明原文链接:https://www.cnblogs.com/CDOI-24374/p/14729292.html
版权声明:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0)进行许可。看完如果觉得有用请点个赞吧 QwQ