qbxt五一数学Day1
I. 基础知识
1. 带余除法(小学)
1. 定义
对于整数 \(a,b\),若有 \(q,r\) 满足:
其中 \(0\le r<b\),那么 \(r\) 称作 \(a\) 模 \(b\) 的 余数,记作 \(a\bmod b\) .
顺便一提,\(a=\left\lfloor\dfrac ab\right\rfloor\) .
2. 性质
\[(a+b)\bmod p=((a\bmod p)+(b\bmod p))\bmod p \]\[(a-b)\bmod p=((a\bmod p)-(b\bmod p))\bmod p \]\[ab\bmod p=((a\bmod p)(b\bmod p))\bmod p \]Proof:
设 \(a=a'p+r_0,b=b'p+r_1\),则有:
\[(a+b)\bmod p=(r_0+r_1)\bmod p=((a\bmod p)+(b\bmod p))\bmod p \]\[(a-b)\bmod p=(r_0-r_1)\bmod p=((a\bmod p)-(b\bmod p))\bmod p \]\[ab\bmod p=(r_0\cdot r_1)\bmod p=((a\bmod p)(b\bmod p))\bmod p\tag*{□} \]
2. 最大公约数(gcd)/ 最小公倍数(lcm)
1. 定义
最大公约数:\(\max G\;s.t.\;p\bmod G=q\bmod G=0\),则 \(G\) 为 \(p,q\) 最大公约数,记做 \(\gcd(p,q)=(p,q)=G\)
最小公倍数:\(\min L\;s.t.\;L\bmod p=L\bmod q=0\),则 \(L\) 为 \(p,q\) 最小公倍数,记做 \(\operatorname{lcm}(p,q)=[p,q]=L\)
2. 性质
\(\gcd(a,b)=\gcd(b,a\bmod b)\)
3. 高精度
II. 矩阵及其应用
1. 定义
\(n\) 行 \(m\) 列的数表就是 矩阵(Martix),矩阵里的数叫做矩阵的 元素(Element),例如下面就是三个矩阵:
矩阵一般用大写字母 \(A,B,C,\cdots\) 表示
特殊的矩阵有:
- 零矩阵 \(O\),所有元素都是 \(0\) 的矩阵 .
- 单位矩阵 \(I\)(或写作 \(E\)),对角线是 \(1\),其余为 \(0\) 的矩阵:\(\begin{bmatrix}1&0&0&\cdots&0\\0&1&0&\cdots&0\\0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&1\end{bmatrix}\) .
2. 运算
相等:所有元素相等
相加减:所有元素相加减
数乘:用数乘每个元素
相乘
3. 递推
Fibonacci 数列:\([F_n,F_{n-1}]\begin{bmatrix}1&1\\1&0\end{bmatrix}=[F_{n+1},F_n]\)
更改系数类似
\(F_n=F_{n-1}+F_{n-3}\) 形:开 \(F_n,F_{n-1},F_{n-2}\)
有常数项:例子:\(F_n=F_{n-1}+F_{n-2}+1\),递推:\([F_n,F_{n-1},1]\begin{bmatrix}1&1&0\\1&0&0\\1&0&1\end{bmatrix}=[F_{n+1},F_n,1]\)
求和:
- 推式子再做矩阵快速幂
- 通用办法:例子:求 Fibonacci 数列和,递推:\([F_n,F_{n-1},S_n]\begin{bmatrix}1&1&0\\1&0&1\\0&0&1\end{bmatrix}=[F_{n+1},F_n,S_{n+1}]\),\(S_n\) 是和 .
4. 图论
https://www.cnblogs.com/CDOI-24374/p/14407416.html
Problem 杰杰的女性朋友
对于每个点 \(u\) 给定属性 \(in_{u,1},in_{u,2},\cdots,in_{u,k}\),\(out_{u,1},out_{u,2},\cdots,out_{u,k}\)
对于任意 \((u,v)\),\(u\) 到 \(v\) 有 \(\sum\limits_{i=1}^k ou_{u,i}in_{v,i}\) 条道路
问 \(u\) 到 \(v\) 不超过 \(d\) 条道路的方案数 .
以下是博客签名,正文无关
本文来自博客园,作者:Jijidawang,转载请注明原文链接:https://www.cnblogs.com/CDOI-24374/p/14724690.html
版权声明:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0)进行许可。看完如果觉得有用请点个赞吧 QwQ