qbxt五一数学Day1

I. 基础知识

1. 带余除法(小学)

1. 定义

对于整数 \(a,b\),若有 \(q,r\) 满足:

\[a=bq+r \]

其中 \(0\le r<b\),那么 \(r\) 称作 \(a\)\(b\)余数,记作 \(a\bmod b\) .

顺便一提,\(a=\left\lfloor\dfrac ab\right\rfloor\) .

2. 性质

\[(a+b)\bmod p=((a\bmod p)+(b\bmod p))\bmod p \]

\[(a-b)\bmod p=((a\bmod p)-(b\bmod p))\bmod p \]

\[ab\bmod p=((a\bmod p)(b\bmod p))\bmod p \]

Proof:

\(a=a'p+r_0,b=b'p+r_1\),则有:

\[(a+b)\bmod p=(r_0+r_1)\bmod p=((a\bmod p)+(b\bmod p))\bmod p \]

\[(a-b)\bmod p=(r_0-r_1)\bmod p=((a\bmod p)-(b\bmod p))\bmod p \]

\[ab\bmod p=(r_0\cdot r_1)\bmod p=((a\bmod p)(b\bmod p))\bmod p\tag*{□} \]

2. 最大公约数(gcd)/ 最小公倍数(lcm)

1. 定义

最大公约数:\(\max G\;s.t.\;p\bmod G=q\bmod G=0\),则 \(G\)\(p,q\) 最大公约数,记做 \(\gcd(p,q)=(p,q)=G\)

最小公倍数:\(\min L\;s.t.\;L\bmod p=L\bmod q=0\),则 \(L\)\(p,q\) 最小公倍数,记做 \(\operatorname{lcm}(p,q)=[p,q]=L\)

2. 性质

\(\gcd(a,b)=\gcd(b,a\bmod b)\)

3. 高精度

II. 矩阵及其应用

1. 定义

\(n\)\(m\) 列的数表就是 矩阵(Martix),矩阵里的数叫做矩阵的 元素(Element),例如下面就是三个矩阵:

\[\begin{bmatrix}1&2\\3&3\end{bmatrix}\quad\begin{Bmatrix}9&3\sqrt 2\\e&0\\-\dfrac 13&\pi^2\end{Bmatrix}\quad,\left(\begin{matrix}3.14&6.28&9.42\\\pi&2\pi&3\pi\end{matrix}\right) \]

矩阵一般用大写字母 \(A,B,C,\cdots\) 表示

特殊的矩阵有:

  • 零矩阵 \(O\),所有元素都是 \(0\) 的矩阵 .
  • 单位矩阵 \(I\)(或写作 \(E\)),对角线是 \(1\),其余为 \(0\) 的矩阵:\(\begin{bmatrix}1&0&0&\cdots&0\\0&1&0&\cdots&0\\0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&1\end{bmatrix}\) .

2. 运算

相等:所有元素相等

相加减:所有元素相加减

数乘:用数乘每个元素

相乘

\[A_{n\times m}B_{m\times k}=C_{n\times k} \]

\[C_{i,j}=\sum_{l=1}^m A_{il}B_{lj} \]

3. 递推

Fibonacci 数列:\([F_n,F_{n-1}]\begin{bmatrix}1&1\\1&0\end{bmatrix}=[F_{n+1},F_n]\)

更改系数类似

\(F_n=F_{n-1}+F_{n-3}\) 形:开 \(F_n,F_{n-1},F_{n-2}\)

有常数项:例子:\(F_n=F_{n-1}+F_{n-2}+1\),递推:\([F_n,F_{n-1},1]\begin{bmatrix}1&1&0\\1&0&0\\1&0&1\end{bmatrix}=[F_{n+1},F_n,1]\)

求和:

  1. 推式子再做矩阵快速幂
  2. 通用办法:例子:求 Fibonacci 数列和,递推:\([F_n,F_{n-1},S_n]\begin{bmatrix}1&1&0\\1&0&1\\0&0&1\end{bmatrix}=[F_{n+1},F_n,S_{n+1}]\)\(S_n\) 是和 .

4. 图论

https://www.cnblogs.com/CDOI-24374/p/14407416.html

Problem 杰杰的女性朋友

对于每个点 \(u\) 给定属性 \(in_{u,1},in_{u,2},\cdots,in_{u,k}\)\(out_{u,1},out_{u,2},\cdots,out_{u,k}\)

对于任意 \((u,v)\)\(u\)\(v\)\(\sum\limits_{i=1}^k ou_{u,i}in_{v,i}\) 条道路

\(u\)\(v\) 不超过 \(d\) 条道路的方案数 .

\[(OI)^t=OIOIOIOI\cdots OI=O(IOIOIOIO\cdots IO)I=O(IO)^{t-1}I \]

posted @ 2021-05-01 20:03  Jijidawang  阅读(65)  评论(0编辑  收藏  举报
😅​