【洛谷P1754 球迷购票问题】题解
卡特兰数经典 \(\texttt{AB}\) 分拆问题。
分析:
题意相当于排列 \(n\) 个 \(\texttt A\) 和 \(n\) 个 \(\texttt B\),使得相邻 \(\texttt{AB}\)(有序!)消掉,然后左右元素并到一起再消,最后消完的序列个数。
设 \(\texttt{AB}\) 为一个组“1”,\(\texttt{AB}\) 自嵌套一次为一个组“2”(即 \(\texttt{AABB}\)),以此类推。
后面大多数数字指组“数字”
题意即转换为一个数 \(n\),求 \(n\) 分解成若干个正整数之和的方案数。
神犇到这一步就可以切掉了吧。
我们这里考虑隔板法:
两个 \(1\) 当然可以合并 \(2\)(\(=1+1\)),\(a\) 和 \(b\) 当然可以合并 \(a+b\),问题转换为有 \(n\) 个 \(1\) 有多少种合并方案。
设 \(n\) 个数的方案数为 \(f(n)\)。
考虑将 \(f(n)\) 分解为 \(f(x_0+y_0)\)。
使用隔板:
- 当隔板在最左侧时,\(x_0=0\),\(f(0)=1\);\(y_0=n\),因为要求合并,所以有 \(n-1\) 种,由乘法原理知,此步答案为 \(f(0)f(n-1)\)。
- 隔板向右移动一格,\(x_0=1\),也就是 \(f(1)\);\(y_0=n-1\),同理是 \(n-2\) 种,由乘法原理知,此步答案为 \(f(1)f(n-2)\)。
- \(\dots\)
- 归纳一下,第 \(i\) 步为 \(f(i)f(n-i-1)\)。
- 最后一步显然是 \(f(n-1)f(0)\);左右对称。
于是得出递推式:
\[f(n)=f(0)f(n-1)+f(1)f(n-2)+f(2)f(n-3)+\dots+f(i)f(n-i-1)+\dots+f(n-1)f(0)
\]
朴素 dp 即可:
#include<iostream>
using namespace std;
const int N=25;
typedef long long ll;
ll n,dp[N];
int main()
{
cin>>n;
dp[0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
dp[i]+=dp[j-1]*dp[i-j];
cout<<dp[n];
return 0;
}
但是再深入一步,会发现 \(f(n)=f(0)f(n-1)+f(1)f(n-2)+f(2)f(n-3)+\dots+f(i)f(n-i-1)+\dots+f(n-1)f(0)\) 的这个 \(f(n)\) 正好就是卡特兰数 \(C_n\),这个公式正好是一个卡特兰数的递推式。
以下是博客签名,正文无关
本文来自博客园,作者:Jijidawang,转载请注明原文链接:https://www.cnblogs.com/CDOI-24374/p/12853907.html
版权声明:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0)进行许可。看完如果觉得有用请点个赞吧 QwQ