二叉树神级遍历算法:morris遍历算法

morris遍历的实质

建立一种机制,对于没有左子树的节点只到达一次,对于有左子树的节点会到达两次

morris遍历的实现原则

记作当前节点为cur。

  1. 如果cur无左孩子,cur向右移动(cur=cur.right)
  2. 如果cur有左孩子,找到cur左子树上最右的节点,记为mostright
    1. 如果mostright的right指针指向空,让其指向cur,cur向左移动(cur=cur.left)
    2. 如果mostright的right指针指向cur,让其指向空,cur向右移动(cur=cur.right)

实现以上的原则,即实现了morris遍历。

morris遍历的实质

建立一种机制,对于没有左子树的节点只到达一次,对于有左子树的节点会到达两次

morris遍历的实例

一个树若按层遍历的结构为{1,2,3,4,5,6,7},即该树为满二叉树,头结点值为1,左右孩子为2,3,叶节点为4,5,6,7

一开始图示:

 

  

我们按照morris遍历来遍历该树。

1)首先cur来到头结点1,按照morris原则的第二条第一点,它存在左孩子,cur左子树上最右的节点为5,它的right指针指向空,所以让其指向1,cur向左移动到2。

2)2有左孩子,且它左子树最右的节点4指向空,按照morris原则的第二条第一点,让4的right指针指向2,cur向左移动到4

3)4不存在左孩子,按照morris原则的第一条,cur向右移动,在第二步中,4的right指针已经指向了2,所以cur会回到2

4)重新回到2,有左孩子,它左子树最右的节点为4,但是在第二步中,4的right指针已经指向了2,不为空。所以按照morris原则的第二条第二点,2向右移动到5,同时4的right指针重新指向空

5)5不存在左孩子,按照morris原则的第一条,cur向右移动,在第一步中,5的right指针已经指向了1,所以cur会回到1

6)cur回到1,回到头结点,左子树遍历完成,1有左孩子,左子树上最右的节点为5,它的right指针指向1,按照morris原则的第二条第二点,1向右移动到3,同时5的right指针重新指回空

……

当到达最后一个节点7时,按照流程下来,此时7无左右孩子,遍历结束。

 

 

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        TreeNode predecessor = null;

        while (root != null) {
            if (root.left != null) {
                // predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                predecessor = root.left;
                while (predecessor.right != null && predecessor.right != root) {
                    predecessor = predecessor.right;
                }
                
                // 让 predecessor 的右指针指向 root,继续遍历左子树
                if (predecessor.right == null) {
                    predecessor.right = root;
                    root = root.left;
                }
                // 说明左子树已经访问完了,我们需要断开链接
                else {
                    res.add(root.val);
                    predecessor.right = null;
                    root = root.right;
                }
            }
            // 如果没有左孩子,则直接访问右孩子
            else {
                res.add(root.val);
                root = root.right;
            }
        }
        return res;
    }
}

 

posted @ 2022-02-18 14:26  小白冲  阅读(198)  评论(0编辑  收藏  举报