[题解] CF587C Duff in the Army
前言
题意
\(n\) 个城市,构成一棵树。给定 \(m\) 个人生活在的城市,输入时的 \(A_i\) 表示编号为 \(i\) 的人居住的城市。 有 \(q\) 次询问,给定两个城市,求两个城市的路径中,编号前 \(a\) 小的人的编号并输出。
思路
树上倍增。
可以将 \(u\) 到 \(v\) 的路径分为三个部分:
- 从 \(u\) 到 \(lca\) 但不包含 \(lca\)的路径。
- 从 \(v\) 到 \(lca\) 但不包含 \(lca\)的路径。
- \(lca\) 这个点。
所以先预处理出 \(dis[i][j][k]\) : \(i\) 向上跳 \(2^j-1\) 部第 \(k\) 小的值。由于查询的 \(a\leq10\) ,所以预处理出前 \(10\) 小的即可。
预处理代码:
for(int i = 1; i <= n; i++)
for(int j = 1; j <= 10; j++) dis[i][0][j] = w[i][j];
for(int j = 1; j <= 30; j++)
for(int i = 1; i <= n; i++) {
fa[i][j] = fa[fa[i][j - 1]][j - 1];
for(int k = 1; k <= 10; k++) dis[i][j][k] = dis[fa[i][j - 1]][j - 1][k];
for(int k = 1; k <= 10; k++) dis[i][j][k + 10] = dis[i][j - 1][k];
sort(dis[i][j] + 1, dis[i][j] + 1 + 20);
}
查询分三部分,其实也跟普通的树上求简单路径的距离差不多。
先求出 \(lca\) ,再用 \(u\) 和 \(v\) 倍增分别向上爬即可。记得最后在算上 \(lca\) 。
时间复杂度 \(O(30n\log n)\) ,\(30\) 是因为 \(10\times \log 10\approx30\)。
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
namespace Quick_Function {
template <typename Temp> void Read(Temp &x) {
x = 0; char ch = getchar(); bool op = 0;
while(ch < '0' || ch > '9') { if(ch == '-') op = 1; ch = getchar(); }
while(ch >= '0' && ch <= '9') { x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar(); }
if(op) x = -x;
}
template <typename T, typename... Args> void Read(T &t, Args &... args) { Read(t); Read(args...); }
template <typename Temp> Temp Max(Temp x, Temp y) { return x > y ? x : y; }
template <typename Temp> Temp Min(Temp x, Temp y) { return x < y ? x : y; }
template <typename Temp> Temp Abs(Temp x) { return x < 0 ? (-x) : x; }
template <typename Temp> void Swap(Temp &x, Temp &y) { x ^= y ^= x ^= y; }
}
using namespace Quick_Function;
#define INF 0x3f3f3f3f
const int MAXN = 1e5 + 5;
struct Edge { int Next, To; };
Edge edge[MAXN << 1];
int head[MAXN], edgetot = 1;
void Addedge(int u, int v) {
edge[++edgetot].Next = head[u], edge[edgetot].To = v, head[u] = edgetot;
edge[++edgetot].Next = head[v], edge[edgetot].To = u, head[v] = edgetot;
}
int w[MAXN][21];
int n, m, q, a;
int dep[MAXN], fa[MAXN][31], dis[MAXN][31][21];
int res1[21], res2[21];
int Get_Lca(int x, int y) {
if(dep[x] < dep[y]) Swap(x, y);
for(int i = 30; i >= 0; i--)
if(dep[x] - (1 << i) >= dep[y]) x = fa[x][i];
if(x == y) return x;
for(int i = 30; i >= 0; i--)
if(fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
void dfs(int u, int step) {
dep[u] = step;
for(int i = head[u]; i; i = edge[i].Next) {
int v = edge[i].To;
if(v != fa[u][0]) {
fa[v][0] = u;
dfs(v, step + 1);
}
}
}
void Upclimb1(int x, int y) {
memset(res1, 0x3f, sizeof(res1));
for(int i = 30; i >= 0; i--)
if(dep[x] - (1 << i) >= dep[y]) {
for(int k = 1; k <= 10; k++) res1[k + 10] = dis[x][i][k];
sort(res1 + 1, res1 + 1 + 20);
x = fa[x][i];
}
}
void Upclimb2(int x, int y) {
memset(res2, 0x3f, sizeof(res2));
for(int i = 30; i >= 0; i--)
if(dep[x] - (1 << i) >= dep[y]) {
for(int k = 1; k <= 10; k++) res2[k + 10] = dis[x][i][k];
sort(res2 + 1, res2 + 1 + 20);
x = fa[x][i];
}
}
void Query(int x, int y) {
int ans = 0;
int lca = Get_Lca(x, y);
if(lca == x) {
Upclimb1(y, x);
for(int i = 1; i <= 10; i++) res1[i + 10] = w[x][i];
sort(res1 + 1, res1 + 1 + 20);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) ans++;
printf("%d ", ans);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) printf("%d ", res1[i]);
return;
}
if(lca == y) {
Swap(x, y);
Upclimb1(y, x);
for(int i = 1; i <= 10; i++) res1[i + 10] = w[x][i];
sort(res1 + 1, res1 + 1 + 20);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) ans++;
printf("%d ", ans);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) printf("%d ", res1[i]);
return;
}
Upclimb1(x, lca);
Upclimb2(y, lca);
for(int i = 1; i <= 10; i++) res1[i + 10] = res2[i];
sort(res1 + 1, res1 + 1 + 20);
for(int i = 1; i <= 10; i++) res1[i + 10] = w[lca][i];
sort(res1 + 1, res1 + 1 + 20);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) ans++;
printf("%d ", ans);
for(int i = 1; i <= a; i++)
if(res1[i] != INF) printf("%d ", res1[i]);
}
int main() {
memset(w, 0x3f, sizeof(w));
memset(dis, 0x3f, sizeof(dis));
Read(n, m, q);
for(int i = 1, u, v; i < n; i++)
Read(u, v), Addedge(u, v);
for(int i = 1, a; i <= m; i++) {
Read(a);
w[a][11] = i;
sort(w[a] + 1, w[a] + 1 + 11);
}
dfs(1, 0);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= 10; j++) dis[i][0][j] = w[i][j];
for(int j = 1; j <= 30; j++)
for(int i = 1; i <= n; i++) {
fa[i][j] = fa[fa[i][j - 1]][j - 1];
for(int k = 1; k <= 10; k++) dis[i][j][k] = dis[fa[i][j - 1]][j - 1][k];
for(int k = 1; k <= 10; k++) dis[i][j][k + 10] = dis[i][j - 1][k];
sort(dis[i][j] + 1, dis[i][j] + 1 + 20);
}
int u, v;
while(q--) {
Read(u, v, a);
Query(u, v);
printf("\n");
}
return 0;
}