摘要:
013D Piling Up 题目描述 点此看题 解法 还是把一开始的球确定了好 \(dp\),否则写出来的 \(dp\) 奇奇怪怪还不好优化。 枚举初始时有 \(x\) 个白球 \(n-x\) 个黑球,注意每一轮之后球数都是 \(n\),可以设 \(dp[i][j]\) 表示前 \(i\) 轮过后 阅读全文
摘要:
一、题目 点此看题 二、解法 \(\tt md\) 这题真的把我心态整炸了,真的太神了,理解都搞了整整一个晚上。 注意本题只需要改变根节点的值,我们可以预处理出 \(dp[u]\) 表示 \(u\) 节点最初的权值,然后设 \(W=dp[1]\),考虑如果 \(W\) 在 \(S\) 中那么代价一定 阅读全文
摘要:
一、题目 点此看题 二、解法 只能说是精神污染了,虽然每个部分都不难把但是放在一起就很难写了。 考虑无向图的情况是好做的,我们直接离线逆序询问,那么删边操作就变成了加边,单点增加操作就变成了单点减少。那么做法是显然的,我们线段树合并维护加边操作,再支持线段树单点修改和线段树上二分即可。 本题是强连通 阅读全文