[BJOI2019] 删数

一、题目

点此看题

二、解法

首先思考序列可以删完的充要条件是:\(\leq a_i\) 的数有 \(a_i\) 个。

然而用这个结论还是很难知道最小修改次数,我们考虑切换限制主体,让每个位置都可以被删除。可以从后往前考虑位置,如果考虑位置 \(i\) 上有 \(x\) 个数,那么我们可以覆盖 \([i-x+1,i]\) 这一段区间。否则如果这个位置没有被覆盖,则要记录 \(1\) 的代价,显然这是必要的,要不然删除进行不下去。同时这也是充分的,因为我们可以把那些被重复覆盖(或者不需要覆盖)的位置调整到这个位置上。

那么求解最小代价的方法是:我们把 \(\leq n\) 的数堆成若干个柱子,然后向左推倒,最小代价就是 \([1,n]\) 中未被覆盖的位置数。

可以用线段树维护这个过程,具体方法就是维护最小值及其个数。单点修改是很容易的,整体平移的话,我们维护一个整体标记,然后注意边界的柱子可能需要删除 \(/\) 添加(因为只推倒 \(\leq n\) 的柱子),时间复杂度 \(O(n\log n)\)

三、总结

切换限制主体真的是很重要的转化方法,前提是写出题目中出现的所有主体,然后改写限制。

#include <cstdio>
#include <iostream>
using namespace std;
const int M = 450005;
int read()
{
	int x=0,f=1;char c;
	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
	return x*f;
}
int n,m,k,s,a[M],b[M];
int mi[M<<2],num[M<<2],fl[M<<2];
void fuck(int i,int c)
{
	mi[i]+=c;fl[i]+=c; 
}
void down(int i)
{
	if(!fl[i]) return ;
	fuck(i<<1,fl[i]);
	fuck(i<<1|1,fl[i]);
	fl[i]=0;
}
void build(int i,int l,int r)
{
	num[i]=r-l+1;
	if(l==r) return ;
	int mid=(l+r)>>1;
	build(i<<1,l,mid);
	build(i<<1|1,mid+1,r);
}
void add(int i,int l,int r,int L,int R,int c)
{
	if(L>r || l>R) return ;
	if(L<=l && r<=R) {fuck(i,c);return ;}
	int mid=(l+r)>>1;down(i);
	add(i<<1,l,mid,L,R,c);
	add(i<<1|1,mid+1,r,L,R,c);
	mi[i]=min(mi[i<<1],mi[i<<1|1]);num[i]=0;
	if(mi[i]==mi[i<<1]) num[i]+=num[i<<1];
	if(mi[i]==mi[i<<1|1]) num[i]+=num[i<<1|1]; 
}
int ask(int i,int l,int r,int L,int R)
{
	if(L>r || l>R) return 0;
	if(L<=l && r<=R) return (mi[i]==0)*num[i];
	int mid=(l+r)>>1;down(i);
	return ask(i<<1,l,mid,L,R)
		+ask(i<<1|1,mid+1,r,L,R);
}
void upd(int x,int c)
{
	int p=x-b[x]+1-(c>0);
	add(1,1,k,p,p,c);b[x]+=c;
}
signed main()
{
	k=450000+1;s=150000+1;
	n=read();m=read();build(1,1,k);
	for(int i=1;i<=n;i++)
		a[i]=s+read(),upd(a[i],1);
	for(int i=1;i<=m;i++)
	{
		int p=read(),x=read();
		if(p)
		{
			if(a[p]<=s+n) upd(a[p],-1);
			else b[a[p]]--;
			a[p]=s+x;
			if(a[p]<=s+n) upd(a[p],1);
			else b[a[p]]++;
		}
		else
		{
			if(x==1 && b[s+n])
				add(1,1,k,s+n-b[s+n]+1,s+n,-1);
			s-=x;
			if(x==-1 && b[s+n])
				add(1,1,k,s+n-b[s+n]+1,s+n,1);
		}
		printf("%d\n",ask(1,1,k,s+1,s+n)); 
	}
}
posted @ 2022-04-12 09:55  C202044zxy  阅读(63)  评论(0编辑  收藏  举报