[JOISC 2020 Day4] 治疗计划

一、题目

点此看题

二、解法

\(dp[i]\) 表示把 \([1,r_i]\) 都治好的最小代价。注意这个状态并没有特殊限制时间,我们只需要保证最后所有人能被治好就行了。

我再进一步地解释这个状态,你可能会说这个状态很奇怪,我不一定要先治疗一个前缀,可以先从中间治起。那么你的说法是对的,所以我再三强调本题的状态对时间是没有限制的,我们可能会被思维定式所局限觉得一定要按时间顺序考虑,但是这个状态的本质是按人去考虑,治前缀只是一种表象,重要的是最后我们会把所有的人治好

明确了上面的观点以后就可以写转移了,一种治疗方案 \(j\)

\[dp[i]\leftarrow dp[j]+c[i] \ \ \ \ \ r_j-l_i+1\geq |t_i-t_j| \]

转移的时候只需要考虑相邻两个方案的限制,也就是在 \(i,j\) 时间的空档期,中间那些新感染的人需要被治好。我们的治疗方案不按 \(r\) 也不按 \(t\) 排序,所以最后转移呈现的形式是在一张有向图上转移

考虑优化转移,用数据结构暴力维护是不行的,因为把绝对值拆开以后会有两重偏序关系,数据结构维护不了。观察转移特点,新增代价只和终点有关,可以看成一个 \(\tt dijkstra\) 模型,每次选取最小的还未松弛的 \(f[j]\),去找能访问到的 \(i\),不难发现从 \(j\) 转移到 \(i\) 是最优的,所以每个点只会被访问一次。

那么以时间排序就能把绝对值拆掉,然后搞个线段树维护即可,势能分析可知时间复杂度 \(O(n\log n)\)

三、总结

当拿到这道题的时候,可能潜意识地就以时间为 \(dp\) 主体,这是难以发现的思维定式。

所以选定 \(dp\) 主体很重要,然后我在此声明,实践是检验 \(dp\) 的唯一标准,我们只需要看他能不能考虑到所有情况,能不能转移,而不用管他是否奇怪。

此外本题提供了一种新的优化思路,当转移新增权值之和终点有关时,可以用 \(\tt dijkstra\) 的贪心来做,这样就有每个点只会被更新一次的美妙性质。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int M = 100005;
#define int long long
const int inf = 1e18;
int read()
{
	int x=0,f=1;char c;
	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
	return x*f;
}
int n,m,ans,f[M],mn[4*M][2];
struct node
{
	int t,l,r,c;
	bool operator < (const node &b) const
	{
		return t<b.t;
	}
}a[M];
struct data
{
	int u,c;
	bool operator < (const data &b) const
	{
		return c>b.c;
	}
};priority_queue<data> q;
void up(int i)
{
	mn[i][0]=min(mn[i<<1][0],mn[i<<1|1][0]);
	mn[i][1]=min(mn[i<<1][1],mn[i<<1|1][1]);
}
void ins(int i,int l,int r,int id,int x,int v)
{
	if(l==r)
	{
		mn[i][0]=x-v;
		mn[i][1]=x+v;
		return ;
	}
	int mid=(l+r)>>1;
	if(mid>=id) ins(i<<1,l,mid,id,x,v);
	else ins(i<<1|1,mid+1,r,id,x,v);
	up(i);
}
void ask(int i,int l,int r,int L,int R,int op,int v,int w)
{
	if(l>R || L>r || mn[i][op]>v) return ;
	if(l==r)
	{
		f[l]=w+a[l].c;q.push(data{l,f[l]});
		mn[i][0]=mn[i][1]=inf;
		return ;
	}
	int mid=(l+r)>>1;
	ask(i<<1,l,mid,L,R,op,v,w);
	ask(i<<1|1,mid+1,r,L,R,op,v,w);
	up(i);
}
signed main()
{
	n=read();m=read();ans=inf;
	for(int i=1;i<=m;i++)
	{
		f[i]=inf;
		a[i].t=read();a[i].l=read();
		a[i].r=read();a[i].c=read();
	}
	sort(a+1,a+1+m);
	for(int i=1;i<=m;i++)
	{
		if(a[i].l==1)
		{
			f[i]=a[i].c;
			q.push(data{i,f[i]});
			ins(1,1,m,i,inf,0);
		}
		else ins(1,1,m,i,a[i].l,a[i].t);
	}
	while(!q.empty())
	{
		int u=q.top().u;q.pop();
		ask(1,1,m,1,u-1,0,a[u].r-a[u].t+1,f[u]);
		ask(1,1,m,u+1,m,1,a[u].r+a[u].t+1,f[u]);
	}
	for(int i=1;i<=m;i++)
		if(a[i].r==n)
			ans=min(ans,f[i]);
	if(ans==inf) puts("-1");
	else printf("%lld\n",ans);
}
posted @ 2021-07-14 21:46  C202044zxy  阅读(669)  评论(0编辑  收藏  举报