POJ #1579 Function Run Fun 记忆化搜索
Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.Output
Print the value for w(a,b,c) for each triple.Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
题意
现在有一个三元组(a, b, c),你要对 a、b、c 的大小进行分类讨论从而确定该三元组的值。这个算法很好实现,但是由于递归次数多所以执行时间很长。请你想一个执行时间尽可能短的办法来实现该算法。
Sample
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
输入格式是三个整数组成的三元组,每个三元组占一行,直到读取到结束标志 -1 -1 -1 。输出格式直接看下面的图,我就不废话了。
Input:
output:
思路
这道题需要解决的是递归中用时过多的问题,为什么会用时过多呢?因为需要解决的子问题有很多都是重复的,即有太多的公共子问题。想想怎么样能少一点时间?那就是边递归边记录,已经记录的值就可以直接返回,这样就避免了递归时同一条数据的重复递归,这种技巧简称记忆化搜索,两个子问题有共同的子子问题,所以填个表,无需重复求解。
算法如下。多多注意边界判断与递归顺序。 算法的最坏情况是每一次只让 a、b、c 其中一个的规模减一,所以算法的时间复杂度是 O(nanbnc) 。
#include<iostream> using std::cin; using std::cout; using std::endl; int getTripleVal(int , int , int ); //查询给定三元组的值 const int MAX = 21; int w[MAX][MAX][MAX]; //记忆数组 int main(void) { int a, b, c; while (cin >> a >> b >> c) { if ( a == -1 && b == -1 && c == -1) { return 0; } else { int res = getTripleVal(a, b, c); cout << "w(" << a << ", " << b << ", " << c << ")" << " = " << res << endl; } } return 0; }//main int getTripleVal(int a, int b, int c) { //边界条件 if (a <= 0 || b <= 0 || c <= 0) { return w[0][0][0] = 1; } if (a >= MAX || b >= MAX || c >= MAX) { return getTripleVal(MAX-1, MAX-1, MAX-1); } //在记忆数组中查询 w[a][b][c]的值,实现记忆化搜索 if (w[a][b][c]) { return w[a][b][c]; } //求出结果并保存 if (a < b && b < c) { return w[a][b][c] = getTripleVal(a, b, c-1) + getTripleVal(a, b-1, c-1) - getTripleVal(a, b-1, c); } //求出结果并保存 return w[a][b][c] = getTripleVal(a-1, b, c) + getTripleVal(a-1, b-1, c) + getTripleVal(a-1, b, c-1) - getTripleVal(a-1, b-1, c-1); }//getTripleVal
————全心全意投入,拒绝画地为牢