思路:其实在沿着残余网络找到增广路径时,找到有着最小流量的那一条边,然后找所有流量中最大的那一条即可。
因为在增广时,如果是最小容量的话,那么这是这条增广路能通过的最大的车流量(也就是割边),然后取最大值即可。
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 1010; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, flow; Edge(int from, int to, int cap, int flow): from(from), to(to), cap(cap), flow(flow) {} }; int high, low; struct EK { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int p[maxn]; int a[maxn]; void init(int n) { this->n = n; edges.clear(); for(int i = 0; i <= n; i++) G[i].clear(); } void AddEdge(int from, int to, int cap) { edges.push_back(Edge (from, to, cap, 0)); edges.push_back(Edge (to, from, 0, 0)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS(int s, int t, int &flow) { memset(a, 0, sizeof(a)); queue<int> Q; Q.push(s); a[s] = INF; while(!Q.empty()) { int u = Q.front(); Q.pop(); for(int i = 0; i < G[u].size(); i++) { Edge &e = edges[G[u][i]]; if(!a[e.to] && e.cap > e.flow) { p[e.to] = G[u][i]; Q.push(e.to); a[e.to] = min(a[u], e.cap-e.flow); } } } if(a[t] == 0) return 0; flow += a[t]; low = INF; int u = t; while(u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; low = min(low, edges[p[u]].cap); //最小容量一定可以装满; u = edges[p[u]].from; } high = max(high, low); //在所有增广路径中找最大容量即可。 return 1; } int Maxflow(int s, int t) { this->s = s; this->t = t; int flow = 0; while(BFS(s, t, flow)) ; return flow; } }; void readint(int &x) { char c; while(!isdigit(c)) c = getchar(); x = 0; while(isdigit(c)) { x = x*10 + c-'0'; c = getchar(); } } void writeint(int x) { if(x > 9) writeint(x/10); putchar(x%10+'0'); } //////////////// EK solver; int n, m, s, t; int kase; void solve() { scanf("%d%d%d%d%d", &kase, &n, &m, &s, &t); solver.init(n+3); high = -INF; while(m--) { int x, y, z; readint(x), readint(y), readint(z); solver.AddEdge(x, y, z); } int ans = solver.Maxflow(s, t); printf("%d %.3lf\n", kase, ans*1.0/high); } int main() { int T; for(readint(T); T > 0; T--) solve(); return 0; }