「学习笔记」Dirichlet卷积 莫比乌斯函数 莫比乌斯反演

前置知识

引理一

\[\forall a,b,c \in \mathbb{Z}, \lfloor\frac{a}{bc}\rfloor = \lfloor\frac{\lfloor{\frac{a}{b}}\rfloor}{c}\rfloor \]

证明 :

\[\frac{a}{b}=\lfloor\frac{a}{b}\rfloor+r\ (0\le r <1) \]

所以

\[\begin{align} \lfloor\frac{a}{bc}\rfloor &=\lfloor\frac{a}{b}\cdot\frac{1}{c}\rfloor \\ &=\lfloor\lfloor\frac{a}{b}\rfloor\cdot\frac{1}{c}+r\cdot\frac{1}{c}\rfloor \\ &=\left\lfloor\frac{\lfloor{\frac{a}{b}\rfloor}}{c}\right\rfloor \end{align} \]

引理二

\[\forall n\in\mathbb{N},\ \left| \left\{ \lfloor\frac{n}{d}\rfloor\mid d\in\mathbb{N}\right\} \right| \le \lfloor 2\sqrt n \rfloor \]

略证 :

\(d\le \sqrt n\) 时, \(\lfloor\frac{n}{d}\rfloor\) 最多有 \(\sqrt n\) 个值,

\(d>\sqrt n\) 时, 每个 \(\lfloor \frac{n}{d} \rfloor\) 都对应一个小于 \(\sqrt n\) 的值, 所以也最多有 \(\sqrt n\) 个值,

故, \(\lfloor \frac{n}{d} \rfloor\) 最多有 \(2\sqrt n\) 个值.

数论分块

概念

​ 对于含有 \(\lfloor \frac{n}{i} \rfloor\) 的求和式子, 设集合 \(S = \left\{ i\mid \lfloor \frac{n}{i} \rfloor =d \right\}\), 用集合 \(S\) 中的最大值 \(j\) 来代替集合中的值.

结论

\[j=\left\lfloor\frac{n}{\lfloor \frac{n}{i} \rfloor} \right\rfloor \]

证明 :

\[\begin{align} &\because \ \lfloor\frac{n}{i} \rfloor \le \frac{n}{i} \\ &\therefore \ \left\lfloor \frac{n}{\lfloor\frac{n}{i}\rfloor} \right\rfloor \ge \left\lfloor \frac{n}{\frac{n}{i}} \right\rfloor = \lfloor i \rfloor = i \\ &\therefore \ i \le \left\lfloor \frac{n}{\lfloor\frac{n}{i}\rfloor} \right\rfloor \end{align} \]

数论函数

定义

​ 定义域为 \(\mathbb{N_+}\) 的函数.

积性函数

定义

​ 若 \(\forall x,y \in \mathbb{N_+}\)\(\gcd(x,y)=1\) , 有 \(f(xy)=f(x)f(y)\), 则称数论函数 ** \(f(x)\)积性函数**.

性质

​ 若 \(f(x),g(x)\) 为积性函数, 则以下函数也为积性函数.

\[h(x)=f(x^p) \]

\[h(x)=f^p(x) \]

\[h(x)=f(x)g(x) \]

\[h(x)=\sum_{d|x} f(x)g(\frac{x}{d}) = \sum_{ij=x} f(i)g(j) \]

证明 :

\[\begin{align} h(x)h(y) &=\left( \sum_{ij=x} f(i)g(j)\right) \cdot \left( \sum_{ij=y}f(i)g(j) \right) \\ &=\sum_{ij=xy}f(i)g(j) \\ &=h(xy) \end{align} \]

\(PS.\) 第二个等号是因为 \(x,y\) 互质, 且 \(f,g\) 为积性函数.

例子

  1. 单位函数

    \[\varepsilon (n)=[n=1] \]

  2. 恒等函数 ( \(k\) 默认为 \(1\) )

    \[id_k(n)=n^k \]

  3. 常数函数

    \[1(n)=1 \]

  4. 除数函数( \(k\) 默认为 \(1\) )

    \[\sigma_k(n)=\sum_{d|n}d^k \]

  5. 欧拉函数

    \[\varphi(n)=\sum_{i=1}^n \left[\gcd(i,n)==1\right] \]

  6. 莫比乌斯函数

Dirichlet 卷积

定义

两个数论函数 \(f(n),g(n)\)\(Dirichlet\) (狄利克雷) 卷积 \(h(n)\) 也同样为数论函数, 记为 \(h=f*g\).

\[h(n) = \sum_{d|n}f(d)g(\frac{n}{d}) \]

性质

  1. 满足交换律和结合律.
  2. 单位函数 $\varepsilon $ 为 \(Dirichlet\) 卷积的单位元, 即对任意数论函数 \(f(n)\) , 都有 \(f*\varepsilon =f\).

例子

( \(1\) 为常数函数 \(1(n)=1\) )

\[\epsilon = \mu * 1 \Longleftrightarrow \epsilon(n)=\sum_{d|n}\mu(d) \]

  1. \(d(n)\) 为约数函数, 表示 \(n\) 的约数个数

\[d=1*1 \Longleftrightarrow \sum_{u|d}1 \]

\[\sigma = id*1 \Longleftrightarrow \sigma(n)=\sum_{d|n}d \]

\[\varphi = \mu *id \Longleftrightarrow \varphi(n)=\sum_{d|n}\mu(d)\frac{n}{d} \]

\[id=\varphi*1 \Longleftrightarrow n=\sum_{d|n}\varphi(d) \]

莫比乌斯函数

定义

\[\mu(n) = \left\{ \begin{aligned} &1, & n=1 \\ &0, & n含有平方因子 \\ &(-1)^k, & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k 为 n 的本质不同的质因子个数 \end{aligned} \right. \]

\(PS.\) 本质不同的质因子个数即为 质因子的种类个数.

性质

\[\begin{aligned} \sum_{d|n} \mu(d) &= \left\{ \begin{align} &1, &n=1 \\ &0, &n\not=1 \end{align} \right. \\ &= \varepsilon(n) \end{aligned} \]

证明 :

\[\begin{align} 设\ n\ 在算数基本定&理下表示为 p_1^{c_1}p_2^{c_2}\cdots p_k^{c_k} \\ \sum_{d|n}\mu(d) &= \sum_{i=0}^{k} C_k^i(-1)^i \\ &= [1+(-1)]^k \\ &= 0^k \end{align} \]

结论

\[[\gcd(i,j)=1]=\sum_{d|\gcd(i,j)}\mu(d) \]

线性筛

void _mu(){
    mu[1]=1;
    for(int i=2;i<=n;i++){
	if(!v[i]){ pri[++pri[0]]=i; mu[i]=-1; }  	\\ pri 中存的是质数
	for(int j=1;j<=pri[0]&&i*pri[j]<=n;j++){
	    v[i*pri[j]]=1;
	    if(i%pri[j]) mu[i*pri[j]]=-mu[i];
	    else{ mu[i*pri[j]]=0; break; }
	}
    }
}

莫比乌斯反演

公式

形式 1

\[若f(n)=\sum_{d|n}g(d),\ 则\ g(n)=\sum_{d|n}\mu(d)f(\frac{n}{d}) \]

形式 2(注意这里 \(\mu\)\(f\) 的顺序不能反)

\[若 f(x)=\sum_{x|d}^n g(d),\ 则\ g(x)=\sum_{x|d}^n\mu\left(\frac{d}{x}\right)f(d) \]

证明 :

\[\begin{align} 法一&: \\ &\because f=g*1, \\ &\therefore f*\mu=g*1*\mu=g*\varepsilon=g,\ 得证. \\ \\ 法二&: \\ & \begin{aligned} \sum_{d|n}\mu(d)f(\frac{n}{d}) &=\sum_{d|n}\mu(d)\sum_{t|\frac{n}{d}}g(t) \\ &=\sum_{t|n}g(t)\sum_{d|\frac{n}{t}}\mu(d) \\ &=\sum_{t|n}g(t)\left[\frac{n}{t}=1\right] \\ &=g(n) \end{aligned} \end{align} \]

posted @ 2020-05-24 20:08  BruceW  阅读(227)  评论(0编辑  收藏  举报