Solution: 题解 CF1196E Connected Component on a Chessboard

感觉这题还可以

因为总空间比输入数量 不知高到哪里去了 ,所以完全不需要考虑放不下的问题

贪心的角度考虑,如果要使相差数量巨大的\(b\)\(w\)能够成功放下来,应该使这些方块尽量分散(似乎有点抽象)

来一发图解

作者因为太懒于是决定直接以B表示黑色,W表示白色

假设有一组方块拼成了一个正方形,如图

BWB
WBW
BWB

那么在不改变白块数量的情况下,最多还能加\(4\)个黑块,分别连在四个白块旁边

但是如果拉成直线,如图

BWBWBWBWB

发现可以在两边总共加\(8\)个黑块了,因为每个白块都可以再接\(2\)个黑块

所以拉成直线是最优方法(我有一个绝妙的证明但是这里写不下

现在回到题目

如果\(b=w\),那么非常简单,直接画条直线

现在考虑\(b\not=w\)

不失一般性,直接假设\(b>w\),反正如果\(b<w\)的话整体右移一格即可

先画直线

直线会包含所有白块

为了尽量消耗黑块,让直线的两个端点都是黑块

比如说如果\(b>w=3\),那么直线应该长这个亚子

BWBWBWB

这样就先消耗掉\(w+1\)个黑块

对于剩下的\(b-w-1\)个黑块,就让它们分置在两边的总共\(2w\)个空间里面

所以如果\(b-w-1\leqslant2w\)那么就是可行的,否则不能

对于后面的具体处理方法就请大家自己思考吧,具体请见代码

Time complexity: \(O(\sum b+\sum w)\)

Memory complexity: \(O(1)\)

\(288\)ms / \(8.00\)KB

//This program is written by Brian Peng.
#pragma GCC optimize("Ofast","inline","no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define Rd(a) (a=read())
#define Gc(a) (a=getchar())
#define Pc(a) putchar(a)
int read(){
	register int x;register char c(getchar());register bool k;
	while(!isdigit(c)&&c^'-')if(Gc(c)==EOF)exit(0);
	if(c^'-')k=1,x=c&15;else k=x=0;
	while(isdigit(Gc(c)))x=(x<<1)+(x<<3)+(c&15);
	return k?x:-x;
}
void wr(register int a){
	if(a<0)Pc('-'),a=-a;
	if(a<=9)Pc(a|'0');
	else wr(a/10),Pc((a%10)|'0');
}
signed const INF(0x3f3f3f3f),NINF(0xc3c3c3c3);
long long const LINF(0x3f3f3f3f3f3f3f3fLL),LNINF(0xc3c3c3c3c3c3c3c3LL);
#define Ps Pc(' ')
#define Pe Pc('\n')
#define Frn0(i,a,b) for(register int i(a);i<(b);++i)
#define Frn1(i,a,b) for(register int i(a);i<=(b);++i)
#define Frn_(i,a,b) for(register int i(a);i>=(b);--i)
#define Mst(a,b) memset(a,b,sizeof(a))
#define File(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
int q,b,w,s;
signed main(){
	Rd(q);
	while(q--){
		Rd(b),Rd(w);
		if(b==w){
			puts("YES");
			Frn1(i,1,b<<1)Pc('1'),Ps,wr(i),Pe;
		}else{
			b<w?(swap(b,w),s=2):s=1;
			if((b-=w+1)>w<<1){puts("NO");continue;};
			puts("YES");
			Frn1(i,0,w<<1)Pc('2'),Ps,wr(s+i),Pe;
			if(b<=w)Frn0(i,0,b)Pc('1'),Ps,wr(s+(i<<1|1)),Pe;
			else{
				Frn0(i,0,w)Pc('1'),Ps,wr(s+(i<<1|1)),Pe;
				b-=w;
				Frn0(i,0,b)Pc('3'),Ps,wr(s+(i<<1|1)),Pe;
			}
		}
	}
	exit(0);
}
posted @ 2020-01-31 17:03  BrianPeng  阅读(242)  评论(0编辑  收藏  举报