[Luogu2422]良好的感觉

题目描述

kkk做了一个人体感觉分析器。每一天,人都有一个感受值Ai,Ai越大,表示人感觉越舒适。在一段时间[i, j]内,人的舒适程度定义为[i, j]中最不舒服的那一天的感受值 * [i, j]中每一天感受值的和。现在给出kkk在连续N天中的感受值,请问,在哪一段时间,kkk感觉最舒适?

输入输出格式

输入格式:

第一行为N,代表数据记录的天数

第二行N个整数,代表每一天的感受值

输出格式:

一行,表示在最舒适的一段时间中的感受值。

输入输出样例

输入样例#1: 
6
3 1 6 4 5 2
输出样例#1: 
60

说明

样例解释:

kkk最开心的一段时间是第3天到第5天,开心值:(6+4+5)*4=60

对于30%的数据,1<=N<=100

对于70%的数据,1<=N<=2000

对于100%的数据,1<=N<=100000,1<=感受值<=1000000

 


 

 

一看貌似就是单调队列优化DP...

然后越看越不像...

我们想一下暴力怎么写,枚举一个点i,值为x,找到左边第一个小于x的位置记为l, 同样的找到右边第一个小于x的位置记作r。

于是显然我们的答案就是x*(qzh[r]-qzh[l-1]),qzh指前缀和数组。这样显然是O(n^2)的,我们考虑优化。

因为题目的特性,很容易想到用单调栈维护递增序列。

我们用单调栈存储下标,保证下标对应的值是单调递增的。

于是我们对于一个新位置i,它的值为x,然后弹掉栈顶值比x大的,直到val[stack[top]] < x。

我们把弹出的那些下标的右端点(即右边第一个比它的值小的位置)设为i。

然后对于新插入的i,我们把i的左端点(与上面类似)设为top-1。

考虑这个做法的正确性。

我们的栈里的坐标是单调递增的,值也是单调递增的,我们新插入的值也如果比前面的小,一定是第一个比前面小的数(显然)。

我们弹晚之后剩下的最后一个一定是坐标最大的比x小的数。

所以我们处理完以上之后再O(n)统计一下答案就行了。

 

 


 

 

 

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
inline int read(){
    int res=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)){res=(res<<3)+(res<<1)+(ch^48);ch=getchar();}
    return res;
}
#define ll long long

int n;
int a[100005];
ll qzh[100005];
ll stack[100005], top; //维护下标 
int le[100005], ri[100005];
ll ans;

int main()
{
    n = read(); 
    for (int i = 1 ; i <= n ; i ++) a[i] = read(), qzh[i] = qzh[i-1] + a[i];
    for (int i = 1 ; i <= n ; i ++)
    {
        while(top and a[stack[top]] >= a[i]) ri[stack[top--]] = i;
        le[i] = stack[top];
        stack[++top] = i;    
    }
    for (int i = 1 ; i <= n ; i ++) {if (!le[i]) le[i] = 0;if (!ri[i]) ri[i] = n;}
    for (int i = 1 ; i <= n ; i ++) ans = max(ans, a[i] * (qzh[ri[i]-1] - qzh[le[i]]));
    printf("%lld\n", ans);
    return 0;
}

 

 

 

posted @ 2018-08-03 22:40  zZhBr  阅读(127)  评论(0编辑  收藏  举报