最大子段和
问题描述
- 求一个序列的最大子段和即最大连续子序列之和。例如序列[4, -3, 5, -2, -1, 2, 6, -2]的最大子段和为11=[4+(-3)+5+(-2)+(-1)+(2)+(6)]。
方法一:分治
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 7 int MaxSubSum(const int arr[],int l,int r){ 8 int sum=0; 9 if(l==r) 10 return arr[l]; 11 else{ 12 int mid=l+(r-l)/2; 13 int lsum=MaxSubSum(arr,l,mid); 14 int rsum=MaxSubSum(arr,mid+1,r); 15 int s1=0; 16 int lefts=0; 17 for(int i=mid; i>=l; i--){ 18 lefts+=arr[i]; 19 // s1=max(lefts,s1); 20 if(lefts>s1) s1=lefts; 21 } 22 int s2=0; 23 int rights=0; 24 for( int i=mid+1; i<=r; i++ ){ 25 rights+=arr[i]; 26 // s2=max(rights,s2); 27 if(rights>s2) s2=rights; 28 } 29 sum=s1+s2; 30 sum=max(sum,max(lsum,rsum)); 31 return sum; 32 } 33 } 34 35 int main(){ 36 const int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 }; 37 int maxSubSum=MaxSubSum(a,0,7); 38 cout<<maxSubSum<<endl; 39 40 41 return 0; 42 }
方法二:动态规划
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 const int maxn = 20; 7 8 int main(){ 9 const int a[] = { 0,4, -3, 5, -2, -1, 2, 6, -2 }; 10 int b[maxn]; 11 memset(b,0,sizeof(b)); 12 int sum=0; 13 int len =sizeof(a)/sizeof(int); 14 for( int i=1; i<len; i++ ){ 15 if(b[i-1]>0) b[i]=b[i-1]+a[i]; 16 else b[i]=a[i]; 17 sum=max(sum,b[i]); 18 } 19 cout<<sum<<endl; 20 21 return 0; 22 }
。。。。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define INF 0x3f3f3f3f const int maxn = 20; int sum[maxn]; int main(){ memset(sum,0,sizeof(sum)); const int a[] = { 0,4, -3, 5, -2, -1, 2, 6, -2 }; int len =sizeof(a)/sizeof(int); for( int i=1; i<=len; i++ ){ sum[i]=sum[i-1]+a[i]; } for( int i=0; i<len; i++ ){ cout<<sum[i]<<" "; } cout<<endl; int ove_min=INF; int ove_max=-INF; for( int i=0; i<len; i++ ){ ove_min=min(ove_min,sum[i]); ove_max=max(ove_max,sum[i]); } cout<<ove_max<<" "<<ove_min<<endl; return 0; }
有些目标看似很遥远,但只要付出足够多的努力,这一切总有可能实现!