增量式爬虫
阅读目录
引言:
当我们在浏览相关网页的时候会发现,某些网站定时会在原有网页数据的基础上更新一批数据,例如某电影网站会实时更新一批最近热门的电影。小说网站会根据作者创作的进度实时更新最新的章节数据等等。那么,类似的情景,当我们在爬虫的过程中遇到时,我们是不是需要定时更新程序以便能爬取到网站中最近更新的数据呢?
一.增量式爬虫介绍
- 概念:通过爬虫程序监测某网站数据更新的情况,以便可以爬取到该网站更新出的新数据。
- 如何进行增量式的爬取工作:
- 在发送请求之前判断这个URL是不是之前爬取过
- 在解析内容后判断这部分内容是不是之前爬取过
- 写入存储介质时判断内容是不是已经在介质中存在
- 分析:
不难发现,其实增量爬取的核心是去重, 至于去重的操作在哪个步骤起作用,只能说各有利弊。在我看来,前两种思路需要根据实际情况取一个(也可能都用)。第一种思路适合不断有新页面出现的网站,比如说小说的新章节,每天的最新新闻等等;第二种思路则适合页面内容会更新的网站。第三个思路是相当于是最后的一道防线。这样做可以最大程度上达到去重的目的。
- 分析:
- 去重方法
- 将爬取过程中产生的url进行存储,存储在redis的set中。当下次进行数据爬取时,首先对即将要发起的请求对应的url在存储的url的set中做判断,如果存在则不进行请求,否则才进行请求。
- 对爬取到的网页内容进行唯一标识的制定,然后将该唯一表示存储至redis的set中。当下次爬取到网页数据的时候,在进行持久化存储之前,首先可以先判断该数据的唯一标识在redis的set中是否存在,在决定是否进行持久化存储。
项目案例一、 基于url 存储的增量式:https://www.4567tv.tv/frim/index1.html
爬虫文件
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from redis import Redis from moviePro.items import MovieproItem class MovieSpider(CrawlSpider): conn = Redis(host='127.0.0.1',port=6379) name = 'movie' # allowed_domains = ['www.xxx.com'] start_urls = ['https://www.4567tv.tv/frim/index1.html'] rules = ( Rule(LinkExtractor(allow=r'/frim/index1-\d+\.html'), callback='parse_item', follow=True), ) def parse_item(self, response): #解析出当前页码对应页面中电影详情页的url li_list = response.xpath('//div[@class="stui-pannel_bd"]/ul/li') for li in li_list: #解析详情页的url detail_url = 'https://www.4567tv.tv'+li.xpath('./div/a/@href').extract_first() #ex == 1:该url没有被请求过 ex == 0:该url已经被请求过了 ex = self.conn.sadd('movie_detail_urls',detail_url) if ex == 1: print('有新数据可爬取......') yield scrapy.Request(url=detail_url,callback=self.parse_detail) else: print('暂无新数据可爬取!') def parse_detail(self,response): name = response.xpath('/html/body/div[1]/div/div/div/div[2]/h1/text()').extract_first() m_type = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[1]/a[1]/text()').extract_first() item = MovieproItem() item['name'] = name item['m_type'] = m_type yield item
items文件
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class MovieproItem(scrapy.Item): # define the fields for your item here like: name = scrapy.Field() m_type = scrapy.Field()
pipelines.py文件
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class MovieproPipeline(object): def process_item(self, item, spider): conn = spider.conn dic = { 'name':item['name'], 'm_type':item['m_type'] } conn.lpush('movie_data',dic) return item
settings.py
ITEM_PIPELINES = { 'moviePro.pipelines.MovieproPipeline': 300, }
项目案例二、基于数据存储的增量式爬虫
爬虫文件:
# -*- coding: utf-8 -*- import scrapy from qiubaiPro.items import QiubaiproItem import hashlib from redis import Redis class QiubaiSpider(scrapy.Spider): name = 'qiubai' conn = Redis(host='127.0.0.1',port=6379) # allowed_domains = ['www.xxx.com'] start_urls = ['https://www.qiushibaike.com/text/'] def parse(self, response): div_list = response.xpath('//div[@id="content-left"]/div') for div in div_list: #数据指纹:爬取到一条数据的唯一标识 author = div.xpath('./div/a[2]/h2/text() | ./div/span[2]/h2/text()').extract_first() content = div.xpath('./a/div/span//text()').extract() content = ''.join(content) item = QiubaiproItem() item['author'] = author item['content'] = content #数据指纹的创建 data = author+content hash_key = hashlib.sha256(data.encode()).hexdigest() ex = self.conn.sadd('hash_keys',hash_key) if ex == 1: print('有新数据更新......') yield item else: print('无数据更新!')
items文件
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class QiubaiproItem(scrapy.Item): # define the fields for your item here like: author = scrapy.Field() content = scrapy.Field()
管道文件:
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class QiubaiproPipeline(object): def process_item(self, item, spider): return item