三种数据解析方式
阅读目录:
数据解析的三种方式:
数据解析的原理
- 实现标签定位
- 将标签中存储的文本内容或者相关的属性值进行提取
正则
正则回顾:
单字符: . : 除换行以外所有字符 [] :[aoe] [a-w] 匹配集合中任意一个字符 \d :数字 [0-9] \D : 非数字 \w :数字、字母、下划线、中文 \W : 非\w \s :所有的空白字符包,括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。 \S : 非空白 数量修饰: * : 任意多次 >=0 + : 至少1次 >=1 ? : 可有可无 0次或者1次 {m} :固定m次 hello{3,} {m,} :至少m次 {m,n} :m-n次 边界: $ : 以某某结尾 ^ : 以某某开头 分组: (ab) 贪婪模式: .* 非贪婪(惰性)模式: .*? re.I : 忽略大小写 re.M :多行匹配 re.S :单行匹配 re.sub(正则表达式, 替换内容, 字符串)
回顾练习:
import re #提取出python key="javapythonc++php" re.findall('python',key)[0] ##################################################################### #提取出hello world key="<html><h1>hello world<h1></html>" re.findall('<h1>(.*)<h1>',key)[0] ##################################################################### #提取170 string = '我喜欢身高为170的女孩' re.findall('\d+',string) ##################################################################### #提取出http://和https:// key='http://www.baidu.com and https://boob.com' re.findall('https?://',key) ##################################################################### #提取出hello key='lalala<hTml>hello</HtMl>hahah' #输出<hTml>hello</HtMl> re.findall('<[Hh][Tt][mM][lL]>(.*)</[Hh][Tt][mM][lL]>',key) ##################################################################### #提取出hit. key='bobo@hit.edu.com'#想要匹配到hit. re.findall('h.*?\.',key) ##################################################################### #匹配sas和saas key='saas and sas and saaas' re.findall('sa{1,2}s',key) ##################################################################### #匹配出i开头的行 string = '''fall in love with you i love you very much i love she i love her''' re.findall('^.*',string,re.M) ##################################################################### #匹配全部行 string1 = """<div>静夜思 窗前明月光 疑是地上霜 举头望明月 低头思故乡 </div>""" re.findall('.*',string1,re.S)
#!/usr/bin/env python # -*- coding:utf-8 -*- import requests import re import os if __name__ == "__main__": url = 'https://www.qiushibaike.com/pic/%s/' headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', } #指定起始也结束页码 page_start = int(input('enter start page:')) page_end = int(input('enter end page:')) #创建文件夹 if not os.path.exists('images'): os.mkdir('images') #循环解析且下载指定页码中的图片数据 for page in range(page_start,page_end+1): print('正在下载第%d页图片'%page) new_url = format(url % page) response = requests.get(url=new_url,headers=headers) #解析response中的图片链接 e = '<div class="thumb">.*?<img src="(.*?)".*?>.*?</div>' pa = re.compile(e,re.S) image_urls = pa.findall(response.text) #循环下载该页码下所有的图片数据 for image_url in image_urls: image_url = 'https:' + image_url image_name = image_url.split('/')[-1] image_path = 'images/'+image_name image_data = requests.get(url=image_url,headers=headers).content with open(image_path,'wb') as fp: fp.write(image_data)
import requests import os import re from urllib import request url="https://www.qiushibaike.com/pic/" header = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"} page_text=requests.get(url=url,headers=header).text #创建一个文件夹用来存储下载好的所有图片 if not os.path.exists("./qiutu"): os.mkdir("./qiutu") #进行数据解析(img标签) ex='<div class="thumb">.*?<img src="(.*?)" alt.*?</div>' img_src_list=re.findall(ex,page_text,re.S) for src in img_src_list: src = "https:" +src name =src.split("/")[-1] img_path = "./qiutu" + name request.urlretrieve(src,img_path) print(name,"下载完成!")
Bs4
环境安装:
pip install bs4
pip install lxml
解析原理:
- 实例化一个BeautifulSoup对象,必须把即将被解析的页面源码加载到该对象中
- 调用该对象中相关的属性或者方法进行标签的定位和内容的提取
如何实例化一个BeautifulSoup对象
- 本地:
- soup = BeautifulSoup(open('本地文件'), 'lxml')
- 网络加载:
- soup = BeautifulSoup('字符串类型或者字节类型', 'lxml')
基础巩固: (1)根据标签名查找 - soup.tagName 定位标签 只能找到第一个符合要求的标签,返回的永远是一个单数
(2)获取属性 - soup.a.attrs 获取a所有的属性和属性值,返回一个字典 - soup.a.attrs['href'] 获取href属性 - soup.a['href'] 也可简写为这种形式 (3)获取内容 - soup.a.string 取得标签中直系的文本内容 - soup.a.text 取得的是标签下面所有的文本内容 - soup.a.get_text() 【注意】如果标签还有标签,那么string获取到的结果为None,而其它两个,可以获取文本内容
(4)find:找到第一个符合要求的标签 ,返回的是一个单数 - soup.find('a') 找到第一个符合要求的 - soup.find('a', title="xxx") - soup.find('a', alt="xxx") - soup.find('a', class_="xxx") - soup.find('a', id="xxx")
(5)find_all:找到所有符合要求的标签,返回的是一个列表 - soup.find_all('a') - soup.find_all(['a','b']) 找到所有的a和b标签 - soup.find_all('a', limit=2) 限制前两个
(6)根据选择器选择指定的内容 select:soup.select('#feng') - 常见的选择器:标签选择器(a)、类选择器(.)、id选择器(#)、层级选择器 - 层级选择器: div .dudu #lala .meme .xixi 下面好多级 空格分开 div > p > a > .lala 只能是下面一级 【注意】select选择器返回永远是列表,需要通过下标提取指定的对象
#!/usr/bin/env python # -*- coding:utf-8 -*- import requests from bs4 import BeautifulSoup headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', } def parse_content(url): #获取标题正文页数据 page_text = requests.get(url,headers=headers).text soup = BeautifulSoup(page_text,'lxml') #解析获得标签 ele = soup.find('div',class_='chapter_content') content = ele.text #获取标签中的数据值 return content if __name__ == "__main__": url = 'http://www.shicimingju.com/book/sanguoyanyi.html' reponse = requests.get(url=url,headers=headers) page_text = reponse.text #创建soup对象 soup = BeautifulSoup(page_text,'lxml') #解析数据 a_eles = soup.select('.book-mulu > ul > li > a') print(a_eles) cap = 1 for ele in a_eles: print('开始下载第%d章节'%cap) cap+=1 title = ele.string content_url = 'http://www.shicimingju.com'+ele['href'] content = parse_content(content_url) with open('./sanguo.txt','w') as fp: fp.write(title+":"+content+'\n\n\n\n\n') print('结束下载第%d章节'%cap)
xpath
解析原理:
- 实例化etree对象,且将源码加载到该对象中
- 使用XPATH方法结合着Xpath表达式进行标签定位和数据提取
属性定位: #找到class属性值为song的div标签 //div[@class="song"] 层级&索引定位: #找到class属性值为tang的div的直系子标签ul下的第二个子标签li下的直系子标签a //div[@class="tang"]/ul/li[2]/a 逻辑运算: #找到href属性值为空且class属性值为du的a标签 //a[@href="" and @class="du"] 模糊匹配: //div[contains(@class, "ng")] //div[starts-with(@class, "ta")] 取文本: # /表示获取某个标签下的文本内容 # //表示获取某个标签下的文本内容和所有子标签下的文本内容 //div[@class="song"]/p[1]/text() //div[@class="tang"]//text() 取属性: //div[@class="tang"]//li[2]/a/@href
- 代码中使用xpath表达式进行数据解析:
1.下载:pip install lxml 2.导包:from lxml import etree 3.将html文档或者xml文档转换成一个etree对象,然后调用对象中的方法查找指定的节点 2.1 本地文件:tree = etree.parse(文件名) tree.xpath("xpath表达式") 2.2 网络数据:tree = etree.HTML(网页内容字符串) tree.xpath("xpath表达式")
安装xpath插件在浏览器中对xpath表达式进行验证:可以在插件中直接执行xpath表达式
-
将xpath插件拖动到谷歌浏览器拓展程序(更多工具)中,安装成功
-
启动和关闭插件 ctrl + shift + x
from lxml import etree import requests url='http://www.haoduanzi.com/category-10_2.html' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36', } url_content=requests.get(url,headers=headers).text #使用xpath对url_conten进行解析 #使用xpath解析从网络上获取的数据 tree=etree.HTML(url_content) #解析获取当页所有段子的标题 title_list=tree.xpath('//div[@class="log cate10 auth1"]/h3/a/text()') ele_div_list=tree.xpath('//div[@class="log cate10 auth1"]') text_list=[] #最终会存储12个段子的文本内容 for ele in ele_div_list: #段子的文本内容(是存放在list列表中) text_list=ele.xpath('./div[@class="cont"]//text()') #list列表中的文本内容全部提取到一个字符串中 text_str=str(text_list) #字符串形式的文本内容防止到all_text列表中 text_list.append(text_str) print(title_list) print(text_list)
import requests from lxml import etree from fake_useragent import UserAgent import base64 import urllib.request url = 'http://jandan.net/ooxx' ua = UserAgent(verify_ssl=False,use_cache_server=False).random headers = { 'User-Agent':ua } page_text = requests.get(url=url,headers=headers).text #查看页面源码:发现所有图片的src值都是一样的。 #简单观察会发现每张图片加载都是通过jandan_load_img(this)这个js函数实现的。 #在该函数后面还有一个class值为img-hash的标签,里面存储的是一组hash值,该值就是加密后的img地址 #加密就是通过js函数实现的,所以分析js函数,获知加密方式,然后进行解密。 #通过抓包工具抓取起始url的数据包,在数据包中全局搜索js函数名(jandan_load_img),然后分析该函数实现加密的方式。 #在该js函数中发现有一个方法调用,该方法就是加密方式,对该方法进行搜索 #搜索到的方法中会发现base64和md5等字样,md5是不可逆的所以优先考虑使用base64解密 #print(page_text) tree = etree.HTML(page_text) #在抓包工具的数据包响应对象对应的页面中进行xpath的编写,而不是在浏览器页面中。 #获取了加密的图片url数据 imgCode_list = tree.xpath('//span[@class="img-hash"]/text()') imgUrl_list = [] for url in imgCode_list: #base64.b64decode(url)为byte类型,需要转成str img_url = 'http:'+base64.b64decode(url).decode() imgUrl_list.append(img_url) for url in imgUrl_list: filePath = url.split('/')[-1] urllib.request.urlretrieve(url=url,filename=filePath) print(filePath+'下载成功')
import requests from bs4 import BeautifulSoup import lxml import re url="https://www.pearvideo.com/category_3" header={"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"} page_msg=requests.get(url=url,headers=header).text soup = BeautifulSoup(page_msg,"lxml") a_href=soup.select(".vervideo-bd a")[0:5:2] for i in a_href: vidio_url="https://www.pearvideo.com/"+i["href"] vidio_msg=requests.get(url=vidio_url,headers=header).text vidio_http = re.findall("https.*mp4",vidio_msg)[0] msg=requests.get(url=vidio_http,headers=header).content with open("{}.mp4".format(i["href"]),"wb") as f: f.write(msg)
import requests from bs4 import BeautifulSoup import lxml import re import os from uuid import uuid4 url_page1 = "http://sc.chinaz.com/jianli/free.html" header = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"} for page in range(1, 5): if page == 1: url_page = "http://sc.chinaz.com/jianli/free.html" else: url_page = "http://sc.chinaz.com/jianli/free_{}.html".format(page) page_msg = requests.get(url=url_page, headers=header) page_msg.encoding = "utf-8" page_msg = page_msg.text soup = BeautifulSoup(page_msg, "lxml") for a in soup.select(".title_wl"): jianli_url = a["href"] jianli_msg = requests.get(url=jianli_url, headers=header) jianli_msg.encoding = "utf-8" jianli_msg = jianli_msg.text soup1 = BeautifulSoup(jianli_msg, "lxml") a_list = soup1.select("#down .clearfix li a")[0] jianli_msg = a_list["href"] if re.findall("http:.*", jianli_msg): down_url = re.findall("http:.*", jianli_msg)[0] down_msg = requests.get(url=down_url, headers=header).content path = r"E:\学习相关\python全栈17期课程及笔记\爬虫相关\free_jianli" path = os.path.join(path, "{}.rar".format(uuid4())) with open(path, "wb") as f: f.write(down_msg)
爬取简历时可能遇到的问题