基于TensorFlow 2与PaddlePaddle 2预测泰坦尼克号旅客生存概率的比较

 目录

1,程序比较

2,训练过程对比:

3,训练结果对比


AI框架经过大浪淘沙之后,目前真正能够完整用于生产、科研、学术的只剩下了谷歌、脸书、百度三家的框架,本文通过一个泰坦尼克号旅客生存概率预测的经典问题来比较分析一下TensorFlow2与Paddle2。

本项目完整内容已更新至GitHub,后续一些关于PaddlePaddle的项目也会陆续在此项目更新,链接:

RabbitBoiling/--Deep-Learning-Case-PaddlePaddle-Practice--: 本项目主要包含两部分内容,一部分为PaddlePaddle基础官方教程案例源码的适当改进,另一部分为一些深度学习经典案例的PaddlePaddle实现。 (github.com)

为了保证对比的可靠,两者的网络结构、训练配置,激活函数等等都完全相同,只是用两个不同的框架来实现。

1,程序比较

首先给出TensorFlow的程序,代码如下:

# -*- coding: utf-8 -*-
"""
Created on Thu Mar  4 18:36:21 2021

@author: Biao
"""
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', None) # 显示DataFrame的所有行
from sklearn import preprocessing
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

def prepare_data(selected_data):
    # 为缺失Age记灵境和彷设置为平均僮
    age_mean_value = selected_data['Age'].mean()
    selected_data.loc[:,'Age'] = selected_data.loc[:,'Age'].fillna(age_mean_value)
    # 为缺失Fare记灵境究危
    fare_mean_value = selected_data['Fare'].mean()
    selected_data.loc[:,'Fare'] = selected_data.loc[:,'Fare'].fillna(fare_mean_value)
    # 为缺失Embarked记灵境芫僮
    selected_data.loc[:,'Embarked'] = selected_data.loc[:,'Embarked'].fillna('S')

    # sex字符串转痪为数字编码
    selected_data.loc[:,'Sex'] = selected_data.loc[:,'Sex'].map({'female': 0, 'male': 1}).astype(int)
    # 港口embarked团字母表示转唤为数字编码
    selected_data.loc[:,'Embarked'] = selected_data.loc[:,'Embarked'].map({'C': 0, 'Q': 1, 'S': 2}).astype(int)

    # drop不改变原有的df中的数据,而是返回另一个DataFrame来存放删除后的数据,axis = 1 表示删除列
    selected_df_data = selected_data.drop(['Name'], axis=1)

    # 转挽为ndarray数绢
    ndarray_data = selected_df_data.values
    # 后7叨悬特征列
    features = ndarray_data[:, 1:]
    # 第0列是标签列
    label = ndarray_data[:, 0]

    # 特彶詹标淮化
    minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1))
    norm_features = minmax_scale.fit_transform(features)

    return norm_features, label

# 得到处理后的训练集
# 读取数据文件,结果为DataFrame格式
data_file_path = "./train.xlsx"
df_data = pd.read_excel(data_file_path)
# 筛选提取需要的待彶字段,去葆ticket, cabin等
selected_cols = ['Survived', 'Name', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
selected_df_data = df_data[selected_cols]

# shuffle, 打刮数据顺序,通过Pandas的拙样函数sample实现frac为百分比
shuffled_df_data = selected_df_data.sample(frac=1)
x_train_data, y_train_data = prepare_data(selected_data = shuffled_df_data)

# 得到处理后的测试集
data_file_path = "./train.xlsx"
df_data = pd.read_excel(data_file_path)
selected_cols = ['Survived', 'Name', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
selected_df_data = df_data[selected_cols]
shuffled_df_data = selected_df_data.sample(frac=1)
x_test_data, y_test_data = prepare_data(selected_data = shuffled_df_data)


# 建立模型结构
# 建立Keras序判槐型
model = tf.keras.models.Sequential()

# 加人第一厉,输入特徙数据是7见构可以厉i'nput_shape= (7, )
model.add(tf.keras.layers.Dense(units=64, input_dim=7, use_bias=True, kernel_initializer='uniform', bias_initializer='zeros',activation='relu'))
model.add(tf.keras.layers.Dense(units=32, activation='sigmoid'))
model.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
# 模型结构
model.summary()
# 模型设置
model.compile(optimizer=tf.keras.optimizers.Adam(0.0001), loss='binary_crossentropy', metrics=['accuracy'])
# 模型训练
train_history = model.fit(x=x_train_data, y=y_train_data, validation_split=0.2, epochs=500, batch_size=32, verbose=2)
# 训练过程的历史数据:字典模式存储
train_history.history.keys()

# 模型训练过程可视化
def visu_train_history(train_history, train_metric, validation_metric):
    plt.plot(train_history.history[train_metric])
    plt.plot(train_history.history[validation_metric])
    plt.title('Train History')
    plt.ylabel(train_metric)
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()


visu_train_history(train_history, 'accuracy', 'val_accuracy')
visu_train_history(train_history, 'loss', 'val_loss')

# 模型评估
evaluate_result = model.evaluate(x=x_test_data, y=y_test_data)
model_evaluate_names = model.metrics_names
evaluate_result
print('模型的评估结果为:名字{}数据{}'.format(model_evaluate_names,evaluate_result))

# 模型应用
# Jack和Rose的旅客信息
Jack_info = [0, 'Jack', 3, 'male', 23, 1, 0, 5.0000, 'S']
Rose_info = [1, 'Rose', 1, 'female', 20, 1, 0, 100.0000, 'S']
# 测试信息
file_path = "./train.xlsx"
primary_data = pd.read_excel(file_path)
selected_primary_data = primary_data[selected_cols]
shuffled_primary_data = selected_primary_data.sample(frac=1)
new_test = pd.DataFrame([Jack_info, Rose_info],columns=selected_cols)
new_test_data = shuffled_primary_data.append(new_test)
x_verify_data, y_verify_data = prepare_data(selected_data = new_test_data)
Survival_probability = model.predict(x_verify_data)
print('Jack与Rose的生存概率分别为{},{}'.format(Survival_probability[891,0],Survival_probability[892,0]))


​

PadlePaddle的程序如下:

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
from sklearn import preprocessing
import pandas as pd
import matplotlib.pyplot as plt

def prepare_data(selected_data):
    # 为缺失Age记灵境和彷设置为平均僮
    age_mean_value = selected_data['Age'].mean()
    selected_data.loc[:,'Age'] = selected_data.loc[:,'Age'].fillna(age_mean_value)
    # 为缺失Fare记灵境究危
    fare_mean_value = selected_data['Fare'].mean()
    selected_data.loc[:,'Fare'] = selected_data.loc[:,'Fare'].fillna(fare_mean_value)
    # 为缺失Embarked记灵境芫僮
    selected_data.loc[:,'Embarked'] = selected_data.loc[:,'Embarked'].fillna('S')

    # sex字符串转痪为数字编码
    selected_data.loc[:,'Sex'] = selected_data.loc[:,'Sex'].map({'female': 0, 'male': 1}).astype(int)
    # 港口embarked团字母表示转唤为数字编码
    selected_data.loc[:,'Embarked'] = selected_data.loc[:,'Embarked'].map({'C': 0, 'Q': 1, 'S': 2}).astype(int)

    # drop不改变原有的df中的数据,而是返回另一个DataFrame来存放删除后的数据,axis = 1 表示删除列
    selected_df_data = selected_data.drop(['Name'], axis=1)

    # 转挽为ndarray数绢
    ndarray_data = selected_df_data.values
    ndarray_data = ndarray_data.astype(np.float32) # 必须由float64转化为float32
    # 特彶詹标淮化
    minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1))
    norm_ndarray_data = minmax_scale.fit_transform(ndarray_data)

    return norm_ndarray_data

# 得到处理后的训练集
# 读取数据文件,结果为DataFrame格式
data_file_path = "./train.xlsx"
df_data = pd.read_excel(data_file_path)
# 筛选提取需要的待彶字段,去葆ticket, cabin等
selected_cols = ['Survived', 'Name', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
selected_df_data = df_data[selected_cols]
# shuffle, 打刮数据顺序,通过Pandas的拙样函数sample实现frac为百分比
shuffled_df_data = selected_df_data.sample(frac=1)
train_data = prepare_data(selected_data = shuffled_df_data)

# 得到处理后的测试集
data_file_path = "./train.xlsx"
df_data = pd.read_excel(data_file_path)
selected_cols = ['Survived', 'Name', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
selected_df_data = df_data[selected_cols]
shuffled_df_data = selected_df_data.sample(frac=1)
test_data = prepare_data(selected_data = shuffled_df_data)

# 加载数据
training_data, test_data = train_data, test_data

class Regressor(paddle.nn.Layer):
    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()

        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc1 = Linear(in_features=7, out_features=64)
        self.fc2 = Linear(in_features=64, out_features=32)
        self.fc3 = Linear(in_features=32, out_features=1)

    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc1(inputs)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.sigmoid(x)
        x = self.fc3(x)
        x = F.sigmoid(x)
        return x

# 声明定义好的线性回归模型
model = Regressor()
# 定义评估过程
def train(model):
    paddle.set_device('gpu:0')
    print('start training .......')
    # 开启模型训练模式
    model.train()
    # 定义优化算法,使用随机梯度下降SGD
    # 学习率设置为0.01
    opt = paddle.optimizer.Adam(learning_rate=0.0001, parameters=model.parameters())

    EPOCH_NUM = 300  # 设置外层循环次数
    BATCH_SIZE = 32  # 设置batch大小
    epoch = 0
    epochs = []
    train_losses = []
    train_losses_set = []
    # 定义外层循环
    for epoch_id in range(EPOCH_NUM):
        # 将训练数据进行拆分,每个batch包含10条数据
        mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
        # 定义内层循环
        for iter_id, mini_batch in enumerate(mini_batches):
            x = mini_batch[:, 1:]  # 后7叨悬特征列,二维数组
            y = mini_batch[:, 0]  # 第0列是标签列,一维数组
            y = y.reshape(len(y),1) #最后一个批次可能不是BATCH_SIZE大小
            # 将numpy数据转为飞桨动态图tensor形式
            Survival_features = paddle.to_tensor(x)
            Survival_probability = paddle.to_tensor(y)
            # 前向计算
            predicts = model(Survival_features)

            # 计算损失,采用二元交叉熵损失
            loss = F.binary_cross_entropy(predicts, label=Survival_probability)
            avg_loss = paddle.mean(loss)
            train_losses.append(avg_loss.numpy())
            if iter_id % 20 == 0:
                print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))

            # 反向传播
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.step()
            # 清除梯度
            opt.clear_grad()

        # 求平均精度
        train_losses_mean = np.array(train_losses).mean()
        train_losses_set.append(train_losses_mean)
        epoch = epoch + 1
        epochs.append(epoch)

    # 保存模型参数,文件名为LR_model.pdparams
    paddle.save(model.state_dict(), 'LR_model.pdparams')
    print("模型保存成功,模型参数保存在LR_model.pdparams中")

    return epochs, train_losses_set

# 定义训练过程
def evaluation(model):
    paddle.set_device('gpu:0')
    print('start evaluation .......')
    # 参数为保存模型参数的文件地址
    model_dict = paddle.load('LR_model.pdparams')
    model.load_dict(model_dict)
    model.eval()

    BATCH_SIZE = 32  # 设置batch大小
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(test_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [test_data[k:k + BATCH_SIZE] for k in range(0, len(test_data), BATCH_SIZE)]
    # 定义内层循环
    acc_set = []
    avg_loss_set = []
    for iter_id, mini_batch in enumerate(mini_batches):
        x = mini_batch[:, 1:]  # 后7叨悬特征列,二维数组
        y = mini_batch[:, 0]  # 第0列是标签列,一维数组
        y = y.reshape(len(y),1) #最后一个批次可能不是BATCH_SIZE大小

        y = y.astype(np.int64)
        # 将numpy数据转为飞桨动态图tensor形式
        Survival_features = paddle.to_tensor(x)
        Survival_probability_int64 = paddle.to_tensor(y)
        # 计算预测和精度
        prediction = model(Survival_features)
        acc = paddle.metric.accuracy(prediction, Survival_probability_int64)
        # 计算损失,采用二元交叉熵损失
        y = y.astype(np.float32)
        Survival_probability_float32 = paddle.to_tensor(y)
        loss = F.binary_cross_entropy(prediction, label=Survival_probability_float32)
        avg_loss = paddle.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    # 求平均精度
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('模型在测试集的评估结果为:loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))


model = Regressor()
# 模型训练
Epochs, Train_loss = train(model)
# 模型评估
evaluation(model)

# 画出训练过程中Loss的变化曲线
plt.figure()
plt.title("Train loss", fontsize=24)
plt.xlabel("Epochs", fontsize=14)
plt.ylabel("loss", fontsize=14)
plt.plot(Epochs, Train_loss, color='red', label='train loss')
plt.grid()
plt.show()

Jack_Rose = np.array(([0, 3, 1, 23, 1, 0, 5.0000, 2],[1, 1, 0, 20, 1, 0, 100.0000, 2]),dtype=np.float32)
verify_data = np.append(training_data,Jack_Rose,axis=0)
minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1))
verify_data = minmax_scale.fit_transform(verify_data)
verify_data = verify_data[:, 1:]
verify_data = paddle.to_tensor(verify_data)
model = Regressor()
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()
Survival_prediction = model(verify_data)
Survival_prediction = np.array(Survival_prediction) # 将tensor格式转化为numpy格式
print('Jack与Rose的生存概率分别为{},{}'.format(Survival_prediction[891,0],Survival_prediction[892,0]))

​

 

2,训练过程对比:

TensorFlow的训练过程可视化如下:

 

 PaddlePaddle的训练过程可视化如下:

 3,训练结果对比

TensorFlow对电影主角Jack与Rose的生存概率预测结果为:

 

PaddlePaddle对电影主角Jack与Rose的生存概率预测结果为:

对比二者的预测结果,都很符合实际的结果,只是对比而言, TensorFlow对Rose的生存概率预测的更加准确,而PaddlePaddle对Jack的生存概率预测的更加准确,二者各有千秋吧。

总的来说,PaddlePaddle与TensorFlow处在了同一水平,风格与PyTorch很像,也很值得尝试一下,在国内的支持也比TF与PyTorch要好。

注:本文的TensorFlow代码参考了浙大慕课,链接如下:

深度学习应用开发-TensorFlow实践_中国大学MOOC(慕课) (icourse163.org)

posted @ 2021-07-25 17:19  FranceFurina  阅读(187)  评论(0编辑  收藏  举报