中国荷斯坦牛建模相关技术的研究(Open3D、D435)

 

  • 相关环境
  1. Open3D(https://github.com/IntelVCL/Open3D/)
  2. D435(https://github.com/IntelRealSense/librealsense)
  • Open3D环境的安装

备注:官方版本有更新,遇到问题以官方说明为准

1.Python环境安装

Open3D安装成功导出一个Python库以供调用,网上有Open3D教程基于Python2.7,此处使用的Python版本为3.7,经测试可用。

Python安装可前往官网下载:https://www.python.org/ ,安装时可勾选添加环境变量以免仍需自己配置。

2.Cmake环境安装

Cmake允许开发者编写一种平台无关的 CMakeList.txt 文件来定制整个编译流程,然后再根据目标用户的平台进一步生成所需的本地化 Makefile 和工程文件

在官网下载最新版本:https://cmake.org ,安装时勾选添加环境变量。

http://blog1.gclxry.com/wp-content/uploads/2016/03/image01-1.png

3.Visual Studio环境安装

Visual Studio可前往官网下载:https://visualstudio.microsoft.com/

Open3D官方推荐版本为2015,此处使用VS2017编译成功

4.Open3D编译

前往github下载最新的代码:https://github.com/IntelVCL/Open3D

参考官方文档:http://www.open3d.org/docs/getting_started.html

使用Cmake最终可在Open3D文件夹下过的build文件夹,后续研究大部分基于此文件夹。

配置成功在python中输入import open3d应该可以正常运行

  • D435环境的安装

1.MeshLab安装

MeshLab用于打开相机导出的数据。

在官网下载最新版:http://www.meshlab.net/#download

按照提示安装即可。

2.D435安装SDK

在github上下载官方SDK:

https://github.com/IntelRealSense/librealsense/releases

其中主要是:Intel.RealSense.Viewer.exe

插入D435相机,运行Intel.RealSense.Viewer.exe,可在右方显示相机图像。

打开RGB通道与Depth通道,切换为3D模式,可导出ply文件

  • 运行代码

为了方便调试代码,推荐把需要调试的代码与数据复制到其他文件夹操作。

合成代码:https://paste.ubuntu.com/p/gq2SwfjVss/

import numpy as np
import open3d
from open3d import registration_ransac_based_on_feature_matching as RANSAC
from open3d import registration_icp as ICP
from open3d import compute_fpfh_feature as FPFH
from open3d import get_information_matrix_from_point_clouds as GET_GTG


def register(pcd1, pcd2, size):

    kdt_n = open3d.KDTreeSearchParamHybrid(radius=size, max_nn=50)
    kdt_f = open3d.KDTreeSearchParamHybrid(radius=size * 10, max_nn=50)

    pcd1_d = open3d.voxel_down_sample(pcd1, size)
    pcd2_d = open3d.voxel_down_sample(pcd2, size)
    open3d.estimate_normals(pcd1_d, kdt_n)
    open3d.estimate_normals(pcd2_d, kdt_n)

    pcd1_f = FPFH(pcd1_d, kdt_f)
    pcd2_f = FPFH(pcd2_d, kdt_f)

    checker = [open3d.CorrespondenceCheckerBasedOnEdgeLength(0.9),
               open3d.CorrespondenceCheckerBasedOnDistance(size * 2)]

    est_ptp = open3d.TransformationEstimationPointToPoint()
    est_ptpln = open3d.TransformationEstimationPointToPlane()

    criteria = open3d.RANSACConvergenceCriteria(max_iteration=400000,
                                              max_validation=500)

    result1 = RANSAC(pcd1_d, pcd2_d,
                     pcd1_f, pcd2_f,
                     max_correspondence_distance=size * 2,
                     estimation_method=est_ptp,
                     ransac_n=4,
                     checkers=checker,
                     criteria=criteria)

    result2 = ICP(pcd1, pcd2, size, result1.transformation, est_ptpln)

    return result2.transformation

def merge(pcds):

    all_points = []
    for pcd in pcds:
        all_points.append(np.asarray(pcd.points))

    merged_pcd = open3d.PointCloud()
    merged_pcd.points = open3d.Vector3dVector(np.vstack(all_points))

    return merged_pcd


def add_color_normal(pcd): # in-place coloring and adding normal
    pcd.paint_uniform_color(np.random.rand(3))
    size = np.abs((pcd.get_max_bound() - pcd.get_min_bound())).max() / 30
    kdt_n = open3d.KDTreeSearchParamHybrid(radius=size, max_nn=50)
    open3d.estimate_normals(pcd, kdt_n)


def load_pcds(pcd_files):

    pcds = []
    for f in pcd_files:
        pcd = open3d.read_point_cloud(f)
        add_color_normal(pcd)
        pcds.append(pcd)


    return pcds


def align_pcds(pcds, size):

    pose_graph = open3d.PoseGraph()
    accum_pose = np.identity(4)
    pose_graph.nodes.append(open3d.PoseGraphNode(accum_pose))

    n_pcds = len(pcds)
    for source_id in range(n_pcds):
        for target_id in range(source_id + 1, n_pcds):
            source = pcds[source_id]
            target = pcds[target_id]

            trans = register(source, target, size)
            GTG_mat = GET_GTG(source, target, size, trans)

            if target_id == source_id + 1:
                accum_pose = np.matmul(trans, accum_pose)
                pose_graph.nodes.append(open3d.PoseGraphNode(np.linalg.inv(accum_pose)))

            pose_graph.edges.append(open3d.PoseGraphEdge(source_id,
                                                       target_id,
                                                       trans,
                                                       GTG_mat,
                                                       uncertain=True))



    solver = open3d.GlobalOptimizationLevenbergMarquardt()
    criteria = open3d.GlobalOptimizationConvergenceCriteria()
    option = open3d.GlobalOptimizationOption(
             max_correspondence_distance=size / 10,
             edge_prune_threshold=size / 10,
             reference_node=0)


    open3d.global_optimization(pose_graph,
                            method=solver,
                            criteria=criteria,
                            option=option)


    for pcd_id in range(n_pcds):
        trans = pose_graph.nodes[pcd_id].pose
        pcds[pcd_id].transform(trans)


    return pcds


def main():
    pcds = load_pcds(["data/test/bun270.ply",
				  "data/test/bun315.ply",
				  "data/test/chin.ply",
				  "data/test/bun000.ply",
				  "data/test/bun045.ply",
				  "data/test/bun090.ply",
				  "data/test/bun180.ply"])

    open3d.draw_geometries(pcds, "input pcds")

    size = np.abs((pcds[0].get_max_bound() - pcds[0].get_min_bound())).max() / 30

    pcd_aligned = align_pcds(pcds, size)
    open3d.draw_geometries(pcd_aligned, "aligned")

    pcd_merge = merge(pcd_aligned)
    add_color_normal(pcd_merge)
    open3d.draw_geometries([pcd_merge], "merged")

if __name__ == '__main__':
    main()

将测试数据与代码放入对应文件夹内

  1. 打开命令提示符窗口
  2. cd 代码文件夹(如果不在C盘还需要再键入一行盘符,如D:)
  3. python main.py(main.py为代码文件夹名称)

环境配置无误的话将依次获得处理结果

  • 处理数据

1.通过D435导出ply文件

2.导入MeshLab中,通过上方工具去除多余点

常用操作:

鼠标:旋转模型

Ctrl+鼠标:整体位置拖动

选取某一区域的点:

删除所选的点:ctrl+delete

处理完成后在左上角选择保存。

  1. 把数据放入指定文件夹中
  2. 修改代码读取的文件名,即给pcds变量复制的load_pcds函数
  3. 运行代码查看效果
  • 附录

测试数据:

https://download.csdn.net/download/u011493189/10713389

3DCloud基于照片的3D模型构建:

官方网站:http://www.3dcloud.cn

模型展示:

http://www.3dcloud.cn/Member/?m=Models&a=model_view&model_id=10078

所用照片:

https://download.csdn.net/download/u011493189/10713405

备注:

网站功能尚不完善,免费下载额度有限,高精度建模尚未开放,API尚未开放。

正在慢慢完善之中,可观察其后续进展。

posted @ 2018-10-11 12:22  BoilTask  阅读(110)  评论(0编辑  收藏  举报