Always keep a beginner's min|

Blue Mountain

园龄:10年7个月粉丝:572关注:0

2023-12-20 11:04阅读: 30评论: 0推荐: 0

《深入浅出计算机组成原理》入门 —— 小记随笔

冯·诺依曼体系结构:计算机组成的金字塔

计算机的基本硬件组成

要自己组装一台计算机,要先有三大件,CPU、内存和主板。

  • 我们首先要说的是 CPU,它是计算机最重要的核心配件,全名你肯定知道,叫中央处理器(Central Processing Unit)。计算机的所有“计算”都是由 CPU 来进行的。
  • 第二个重要的配件,就是内存(Memory)。你撰写的程序、打开的浏览器、运行的游戏,都要加载到内存里才能运行。程序读取的数据、计算得到的结果,也都要放在内存里。内存越大,能加载的东西自然也就越多。
  • 存放在内存里的程序和数据,需要被 CPU 读取,CPU 计算完之后,还要把数据写回到内存。然而 CPU 不能直接插到内存上,反之亦然。于是,就带来了最后一个大件——主板(Motherboard)。主板是一个有着各种各样,有时候多达数十乃至上百个插槽的配件。我们的 CPU 要插在主板上,内存也要插在主板上。主板的芯片组(Chipset)和总线(Bus)解决了 CPU 和内存之间如何通信的问题。芯片组控制了数据传输的流转,也就是数据从哪里到哪里的问题。总线则是实际数据传输的高速公路。因此,总线速度(Bus Speed)决定了数据能传输得多快。

另外还需要有

  • 输出设备。
  • 输入设备。
  • 显卡。现在的CPU、主板都带了内置的显卡。如果你用计算机玩游戏,做图形渲染或者跑深度学习应用,你多半就需要买一张单独的显卡,插在主板上。显卡之所以特殊,是因为显卡里有除了 CPU 之外的另一个“处理器”,也就是 GPU(Graphics Processing Unit,图形处理器),GPU 一样可以做各种“计算”的工作。
  • 南桥。鼠标、键盘以及硬盘,这些都是插在主板上的。作为外部 I/O 设备,它们是通过主板上的南桥(SouthBridge)芯片组,来控制和 CPU 之间的通信的。“南桥”芯片的名字很直观,一方面,它在主板上的位置,通常在主板的“南面”。另一方面,它的作用就是作为“桥”,来连接鼠标、键盘以及硬盘这些外部设备和 CPU 之间的通信。
  • 北桥。自然对应着也有“北桥”。是的,以前的主板上通常也有“北桥”芯片,用来作为“桥”,连接 CPU 和内存、显卡之间的通信。不过,随着时间的变迁,现在的主板上的“北桥”芯片的工作,已经被移到了 CPU 的内部,所以你在主板上,已经看不到北桥芯片了。

冯·诺依曼体系结构

计算机祖师爷之一冯·诺依曼(John von Neumann)提出的冯·诺依曼体系结构(Von Neumann architecture),也叫存储程序计算机。什么是存储程序计算机呢?这里面其实暗含了两个概念,一个是“可编程”计算机,一个是“存储”计算机。

img

任何一台计算机的任何一个部件都可以归到运算器、控制器、存储器、输入设备和输出设备中,而所有的现代计算机也都是基于这个基础架构来设计开发的。

知识地图

img

谈谈“性能”究竟是什么?

什么是性能?

  • 第一个是响应时间(Response time)或者叫执行时间(Execution time)。想要提升响应时间这个性能指标,你可以理解为让计算机“跑得更快”。
  • 第二个是吞吐率(Throughput)或者带宽(Bandwidth),想要提升这个指标,你可以理解为让计算机“搬得更多”。

我们一般把性能,定义成响应时间的倒数,也就是:性能 = 1/ 响应时间

计算机的计时单位:CPU 时钟

虽然时间是一个很自然的用来衡量性能的指标,但是用时间来衡量时,有两个问题。

  • 第一个就是时间不“准”。
  • 其次,即使我们已经拿到了 CPU 时间,我们也不一定可以直接“比较”出两个程序的性能差异。

时间不”准“

计算机可能同时运行着好多个程序,CPU 实际上不停地在各个程序之间进行切换。在这些走掉的时间里面,很可能 CPU 切换去运行别的程序了。而且,有些程序在运行的时候,可能要从网络、硬盘去读取数据,要等网络和硬盘把数据读出来,给到内存和 CPU。所以说,要想准确统计某个程序运行时间,进而去比较两个程序的实际性能,我们得把这些时间给刨除掉。

那这件事怎么实现呢?Linux 下有一个叫 time 的命令,可以帮我们统计出来,同样的 Wall Clock Time 下,程序实际在 CPU 上到底花了多少时间。
我们简单运行一下 time 命令。它会返回三个值,第一个是 real time,也就是我们说的 Wall Clock Time,也就是运行程序整个过程中流逝掉的时间;第二个是 user time,也就是 CPU 在运行你的程序,在用户态运行指令的时间;第三个是 sys time,是 CPU 在运行你的程序,在操作系统内核里运行指令的时间。而程序实际花费的 CPU 执行时间(CPU Time),就是 user time 加上 sys time。

$ time seq 1000000 | wc -l
1000000
real 0m0.101s
user 0m0.031s
sys 0m0.016s

在我给的这个例子里,你可以看到,实际上程序用了 0.101s,但是 CPU time 只有 0.031+0.016 = 0.047s。运行程序的时间里,只有不到一半是实际花在这个程序上的。备注:你最好在云平台上,找一台 1 CPU 的机器来跑这个命令,在多 CPU 的机器上,seq 和 wc 两个命令可能分配到不同的 CPU 上,我们拿到的 user time 和 sys time 是两个 CPU 上花费的时间之和,可能会导致 real time 可能会小于 user time+sys time。

拿到了时间也不能直接获得性能差异

在同一台计算机上,CPU 可能满载运行也可能降频运行,降频运行的时候自然花的时间会多一些。除了 CPU 之外,时间这个性能指标还会受到主板、内存这些其他相关硬件的影响。所以,我们需要对“时间”这个我们可以感知的指标进行拆解,把程序的 CPU 执行时间变成 CPU 时钟周期数(CPU Cycles)和 时钟周期时间(Clock Cycle)的乘积。

程序的 CPU 执行时间 =CPU 时钟周期数×时钟周期时间

在 CPU 内部,和我们平时戴的电子石英表类似,有一个叫晶体振荡器(Oscillator Crystal)的东西,简称为晶振。我们把晶振当成 CPU 内部的电子表来使用。晶振带来的每一次“滴答”,就是时钟周期时间。
最简单的提升性能方案,自然缩短时钟周期时间,也就是提升主频。换句话说,就是换一块好一点的 CPU。不过,这个是我们这些软件工程师控制不了的事情,所以我们就把目光挪到了乘法的另一个因子——CPU 时钟周期数上。如果能够减少程序需要的 CPU 时钟周期数量,一样能够提升程序性能。
对于 CPU 时钟周期数,我们可以再做一个分解,把它变成“指令数×每条指令的平均时钟周期数(Cycles Per Instruction,简称 CPI)”。不同的指令需要的 Cycles 是不同的,加法和乘法都对应着一条 CPU 指令,但是乘法需要的 Cycles 就比加法要多,自然也就慢。在这样拆分了之后,我们的程序的 CPU 执行时间就可以变成这样三个部分的乘积。

程序的 CPU 执行时间 = 指令数×CPI×Clock Cycle Time

因此,如果我们想要解决性能问题,其实就是要优化这三者。

  • 时钟周期时间,就是计算机主频,这个取决于计算机硬件。我们所熟知的摩尔定律就一直在不停地提高我们计算机的主频
  • 每条指令的平均时钟周期数 CPI,就是一条指令到底需要多少 CPU Cycle。在后面讲解 CPU 结构的时候,我们会看到,现代的 CPU 通过流水线技术(Pipeline),让一条指令需要的 CPU Cycle 尽可能地少。因此,对于 CPI 的优化,也是计算机组成和体系结构中的重要一环。* 指令数,代表执行我们的程序到底需要多少条指令、用哪些指令。这个很多时候就把挑战交给了编译器。同样的代码,编译成计算机指令时候,就有各种不同的表示方式。

穿越功耗墙,我们该从哪些方面提升“性能”?

功耗:CPU 的“人体极限”

如果要提升计算机的性能,我们可以从指令数、CPI 以及 CPU 主频这三个地方入手。要搞定指令数或者 CPI,乍一看都不太容易。于是,研发 CPU 的硬件工程师们,从 80 年代开始,就挑上了 CPU 这个“软柿子”。在 CPU 上多放一点晶体管,不断提升 CPU 的时钟频率,这样就能让 CPU 变得更快,程序的执行时间就会缩短。
然而,计算机科学界从来不相信“大力出奇迹”。答案就是功耗问题。什么是功耗问题呢?我们先看一个直观的例子。

一个 3.8GHz 的奔腾 4 处理器,满载功率是 130 瓦。这个 130 瓦是什么概念呢?机场允许带上飞机的充电宝的容量上限是 100 瓦时。如果我们把这个 CPU 安在手机里面,不考虑屏幕内存之类的耗电,这个 CPU 满载运行 45 分钟,充电宝里面就没电了。而 iPhone X 使用 ARM 架构的 CPU,功率则只有 4.5 瓦左右。

我们的 CPU,一般都被叫作超大规模集成电路(Very-Large-Scale Integration,VLSI)。这些电路,实际上都是一个个晶体管组合而成的。CPU 在计算,其实就是让晶体管里面的“开关”不断地去“打开”和“关闭”,来组合完成各种运算和功能。
想要计算得快,一方面,我们要在 CPU 里,同样的面积里面,多放一些晶体管,也就是增加密度;另一方面,我们要让晶体管“打开”和“关闭”得更快一点,也就是提升主频。而这两者,都会增加功耗,带来耗电和散热的问题。
一个 CPU 的功率,可以用这样一个公式来表示:

功耗 ~= 1/2 ×负载电容×电压的平方×开关频率×晶体管数量
  • 为了要提升性能,我们需要不断地增加晶体管数量。同样的面积下,我们想要多放一点晶体管,就要把晶体管造得小一点。这个就是平时我们所说的提升“制程”。
  • 但是,功耗增加太多,就会导致 CPU 散热跟不上,这时,我们就需要降低电压。这里有一点非常关键,在整个功耗的公式里面,功耗和电压的平方是成正比的。这意味着电压下降到原来的 1/5,整个的功耗会变成原来的 1/25。

并行优化,理解阿姆达尔定律

软件工程师们所用的“面向摩尔定律编程”的套路越来越用不下去了。“写程序不考虑性能,等明年 CPU 性能提升一倍,到时候性能自然就不成问题了”,这种想法已经不可行了。于是,从奔腾 4 开始,Intel 意识到通过提升主频比较“难”去实现性能提升,边开始推出 Core Duo 这样的多核 CPU,通过提升“吞吐率”而不是“响应时间”,来达到目的。

但是,并不是所有问题,都可以通过并行提高性能来解决。如果想要使用这种思想,需要满足这样几个条件。
第一,需要进行的计算,本身可以分解成几个可以并行的任务。好比上面的乘法和加法计算,几个人可以同时进行,不会影响最后的结果。
第二,需要能够分解好问题,并确保几个人的结果能够汇总到一起。
第三,在“汇总”这个阶段,是没有办法并行进行的,还是得顺序执行,一步一步来。

这就引出了我们在进行性能优化中,常常用到的一个经验定律,阿姆达尔定律(Amdahl’s Law)。这个定律说的就是,对于一个程序进行优化之后,处理器并行运算之后效率提升的情况。具体可以用这样一个公式来表示:

优化后的执行时间 = 受优化影响的执行时间 / 加速倍数 + 不受影响的执行时间

总结延伸

我们可以看到,无论是简单地通过提升主频,还是增加更多的 CPU 核心数量,通过并行来提升性能,都会遇到相应的瓶颈。仅仅简单地通过“堆硬件”的方式,在今天已经不能很好地满足我们对于程序性能的期望了。

在“摩尔定律”和“并行计算”之外,在整个计算机组成层面,还有这样几个原则性的性能提升方法。

  • 加速大概率事件。最典型的就是,过去几年流行的深度学习,整个计算过程中,99% 都是向量和矩阵计算,于是,工程师们通过用 GPU 替代 CPU,大幅度提升了深度学习的模型训练过程。本来一个 CPU 需要跑几小时甚至几天的程序,GPU 只需要几分钟就好了。
  • 通过流水线提高性能。现代的工厂里的生产线叫“流水线”。我们可以把装配 iPhone 这样的任务拆分成一个个细分的任务,让每个人都只需要处理一道工序,最大化整个工厂的生产效率。类似的,我们的 CPU 其实就是一个“运算工厂”。我们把 CPU 指令执行的过程进行拆分,细化运行,也是现代 CPU 在主频没有办法提升那么多的情况下,性能仍然可以得到提升的重要原因之一。
  • 通过预测提高性能。通过预先猜测下一步该干什么,而不是等上一步运行的结果,提前进行运算,也是让程序跑得更快一点的办法。典型的例子就是在一个循环访问数组的时候,凭经验,你也会猜到下一步我们会访问数组的下一项。后面要讲的“分支和冒险”、“局部性原理”这些 CPU 和存储系统设计方法,其实都是在利用我们对于未来的“预测”,提前进行相应的操作,来提升我们的程序性能。

本文作者:Blue Mountain

本文链接:https://www.cnblogs.com/BlueMountain-HaggenDazs/p/17915941.html

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   Blue Mountain  阅读(30)  评论(0编辑  收藏  举报
(评论功能已被禁用)
点击右上角即可分享
微信分享提示
评论
收藏
关注
推荐
深色
回顶
收起
  1. 1 404 not found REOL
404 not found - REOL
00:00 / 00:00
An audio error has occurred.