用tophat和cufflinks分析RNAseq数据[转载]

转自:http://blog.sciencenet.cn/home.php?mod=space&uid=635619&do=blog&id=884213

//今天看到一篇非常好的讲解RNA-seq的文章,mark一下。

1.基本步骤

RNAseq分析大致分下面几个步骤:

①首先要把测到的序列map到基因组上,

②然后根据map到的区段对细胞构建转录本

③然后比较几种细胞的转录本并且合并

④最后衡量差异和可变剪切和其他的分析。

2.mapping

 可以使用哈希的方法比对,但是由于基因组重复序列太高,效率很低;

所以有了Burrows-Wheeler变换,BWA,Bowtie 和SOAP2都是用它。

Burrows-Wheeler变换是一种文本压缩算法,对于一个精确的序列查找,最多在给定序列的长度的次数里就能找到匹配。

重要问题***:

因为一条RNA不一定是一个外显子表达出来的,也有可能是几个外显子结合在了一起,原来基因里的内含子被空了出来,这些内含子的长度从五十到十万个碱基不等;

如果直接用DNAseq的方法的话去在基因组里寻找,有些正好在两个exon连接处的序列就会有错配,而且有些在进化过程中遗漏下来的假基因是没有intron的,这样就导致有些序列会被map到假基因上去,使假基因的表达变得很高,所以,传统的bwa和bowtie在RNAseq里都不是最好的选择。

3.构建转录本

Mapping完了以后,cufflinks就可以把map到基因组里的序列组装成一个转录组了,这个转录组理论上包含了所有当时细胞里的所有mRNA,组装好的转录组包含了可能的剪切信息和所有转录的表达量,这个表达量是根据map到基因组的序列的总数和每个转录片断的长度进行归一化的,听起来比较难懂,它是对于在转录片断里的每一千个碱基对,在每一百万个成功map的序列中,map在这一千个碱基对上的序列的比例,fragments per kilobase of transcript per million mapped fragments (FKPM)。

计算公式:

在公式里,C代表的是map在这一千个碱基对上的序列的个数,N是所有成功map的序列的个数,L是转录片断的长度。

 

posted @   lypbendlf  阅读(400)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
阅读排行:
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
点击右上角即可分享
微信分享提示