划分训练集测试集时 数据泄露的问题

转自:https://towardsdatascience.com/avoid-data-leakage-split-your-data-before-processing-a7f172632b00

https://towardsdatascience.com/data-splitting-for-model-evaluation-d9545cd04a99

1.数据泄露

数据泄漏是指训练数据集和测试数据集之间偶然的信息共享。 这种信息共享将给模型一个关于测试数据集的“提示”,并生成看起来最优的评估分数。 然而,由于模型对测试数据拟合过度,无法准确预测未来未见数据集。

一个比较常见的数据泄露的原因:在数据预处理后才进行训练-测试集的划分

2.例子

给出由于在数据预处理后才进行训练-测试集的划分,导致数据泄露给测试集的问题。

针对上述训练集,由列1和列2预测target, 如果先对列进行预处理:

列1中Y的值是通过其中有多少个为1的target来替换,即4/6=0.67;列2是按字母顺序编码。

将前7个样本作为训练集,后3个作为测试集,但是从测试集中来看,它能够期望,2个Y,并且其中有一个target为1,这将导致对模型性能的期望过于乐观。  

类似地,对于步骤2,第5行的字母' e '被编码为5,因为它理解完整数据集有' a ', ' b ', ' c '和' d '。 这种信息也会在训练和测试数据之间泄露。 

2.1解决办法

在预处理之前将数据集划分,这样test集以及未见过的数据都会一视同仁地被处理。

先划分:

 

 再预处理:

 

 这样做的好处是:

  • 降低数据泄露风险
  • 未来看不见的数据将以与测试数据完全相同的方式处理,从而确保模型性能的一致性。  

3.随机划分数据集存在的问题

3.1 不平衡数据集

如果我们随机分割一个包含99%负类和1%正类的数据集,会出现什么问题?  

可以通过scikit-learn’s train_test_split()进行分层采样。

3.2 小数据集(有限的数据集)

使用k折交叉验证。

 

 3.3 特征工程泄露

也就是上述提到的例子。

3.4 组泄露Group Leakage

主要是针对train和test中有同个人的样本overlap的情况。

3.5 时序泄露

 

 比如在预测出售的房价时,如果针对数据集随即划分,那么就忽略了时间的因素,可能会导致模型表现比期望更好。

posted @ 2021-11-07 17:18  lypbendlf  阅读(1922)  评论(0编辑  收藏  举报