transformer的encoder和decoder学习

https://www.infoq.cn/article/lteUOi30R4uEyy740Ht2,这个后半部分讲的不错!

1.Transformer Encoder

(N=6 层,每层包括 2 个 sub-layers):

上面这个图真的讲的十分清楚了。 

  • multi-head self-attention mechanism多头自注意力层: 输出z的shape应该是和x一样的,既然能在残差网络部分相加。
  • 全连接网络:使用relu作为激活,并且使用了残差网络:

2.Decoder

 

  • Masked multi-head self-attention mechanism:由于是序列生成过程,所以在时刻 i 的时候,大于 i 的时刻都没有结果,只有小于 i 的时刻有结果,因此需要做 Mask。 
  • Position-wise Feed-forward Networks全连接层:同 Encoder。
  • Encoder-Decoder attention 计算。不同于self-att。

Encoder-Decoder attention与self-att的不同:

前者的q来自解码的输入,kv来自编码输出;后者的qkv来源均是编码的输入。

3.Transformer在GPT和BERT中的应用?

  • GPT 中训练的是单向语言模型,其实就是直接应用 Transformer Decoder;

  • Bert 中训练的是双向语言模型,应用了 Transformer Encoder 部分,不过在 Encoder 基础上还做了 Masked 操作;

BERT Transformer 使用双向 self-attention,而 GPT Transformer 使用受限制的 self-attention,其中每个 token 只能处理其左侧的上下文。双向 Transformer 通常被称为“Transformer encoder”,而左侧上下文被称为“Transformer decoder”,decoder 是不能获要预测的信息的。

双向 self-attention的意思就是计算的att是针对整个句子的吧。而不是只关注左边或者右边。

学习了。 

4.Decoder中seq mask问题

https://www.zhihu.com/question/369075515,这个回答的蛮好的!

总的来说训练时,decoder是并行的,在计算第i个输出的时候,只能看到i之前的输出,而不能看到它后面的,所以就用一个三角矩阵来进行mask,让它不能看到后面的内容。

https://www.zhihu.com/question/337886108,这个讲了shift right操作:

 

posted @ 2020-06-15 21:10  lypbendlf  阅读(5770)  评论(0编辑  收藏  举报